满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点...

如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.
(1)求直线AB的解析式;
(2)当点P运动到点(manfen5.com 满分网,0)时,求此时DP的长及点D的坐标;
(3)是否存在点P,使△OPD的面积等于manfen5.com 满分网?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
manfen5.com 满分网
(1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.设直线AB的解析式是y=kx+b,把已知坐标代入可求解. (2)由△ABD由△AOP旋转得到,证明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出点D的坐标. (3)本题分三种情况进行讨论,设点P的坐标为(t,0): ①当P在x轴正半轴上时,即t>0时,关键是求出D点的纵坐标,方法同(2),在直角三角形DBG中,可根据BD即OP的长和∠DBG的正弦函数求出DG的表达式,即可求出DH的长,根据已知的△OPD的面积可列出一个关于t的方程,即可求出t的值. ②当P在x轴负半轴,但D在x轴上方时.即<t≤0时,方法同①类似,也是在直角三角形DBG用BD的长表示出DG,进而求出GF的长,然后同①. ③当P在x轴负半轴,D在x轴下方时,即t≤时,方法同②. 综合上面三种情况即可求出符合条件的t的值. 【解析】 (1)如图1,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得: BF=OE=2,OF==, ∴点B的坐标是(,2) 设直线AB的解析式是y=kx+b(k≠0),则有. 解得. ∴直线AB的解析式是y=x+4; (2)如图2,∵△ABD由△AOP旋转得到, ∴△ABD≌△AOP, ∴AP=AD,∠DAB=∠PAO, ∴∠DAP=∠BAO=60°, ∴△ADP是等边三角形, ∴DP=AP=. 如图2,过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH. 方法(一) 在Rt△BDG中,∠BGD=90°,∠DBG=60°. ∴BG=BD•cos60°=×=. DG=BD•sin60°=×=. ∴OH=EG=,DH= ∴点D的坐标为(,) 方法(二) 易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG, ∴;而AE=2,BD=OP=,BE=2,AB=4, 则有,解得BG=,DG=; ∴OH=,DH=; ∴点D的坐标为(,). (3)假设存在点P,在它的运动过程中,使△OPD的面积等于. 设点P为(t,0),下面分三种情况讨论: ①当t>0时,如图,BD=OP=t,DG=t, ∴DH=2+t. ∵△OPD的面积等于, ∴, 解得,(舍去) ∴点P1的坐标为(,0). ②∵当D在x轴上时,根据勾股定理求出BD==OP, ∴当<t≤0时,如图,BD=OP=-t,DG=-t, ∴GH=BF=2-(-t)=2+t. ∵△OPD的面积等于, ∴, 解得,, ∴点P2的坐标为(,0),点P3的坐标为(,0). ③当t≤时,如图3,BD=OP=-t,DG=-t, ∴DH=-t-2. ∵△OPD的面积等于, ∴(-t)【-(2+t)】=, 解得(舍去), ∴点P4的坐标为(,0), 综上所述,点P的坐标分别为P1(,0)、P2(,0)、P3(,0)、 P4(,0).
复制答案
考点分析:
相关试题推荐
如图,对称轴为直线x=manfen5.com 满分网的抛物线经过点A(-6,0)和点B(0,4).
(1)求抛物线的解析式和顶点坐标;
(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;
①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?
②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.•

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:DE为⊙O的切线;
(2)若⊙O的半径为5,∠BAC=60°,求DE的长.

manfen5.com 满分网 查看答案
如图,某堤坝的横截面是梯形ABCD,背水坡AD的坡度i(即tanα)为1:1.2,坝高为5米,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽1米,形成新的背水坡EF,其坡度为1:1.4,已知堤坝总长度为4000米.
(1)求完成该工程需要多少土方?
(2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?

manfen5.com 满分网 查看答案
如图所示,在▱ABCD中,点E,F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已知标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).
(1)连接______
(2)猜想:______=______
(3)证明.

manfen5.com 满分网 查看答案
如图,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1
(1)写出点D1的坐标______,点D旋转到点D1所经过的路线长______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.