(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;
(2)由(1)可知△AOC≌△BOD,所以AC=BD=2,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,则CD=.
(1)证明:∵∠DOB=90°-∠AOD,∠AOC=90°-∠AOD,
∴∠DOB=∠AOC,
又∵OC=OD,OA=OB,
在△AOC和△BOD中,
∴△AOC≌△BOD(SAS);
(2)【解析】
∵△AOC≌△BOD,
∴AC=BD=2,∠CAO=∠DBO=45°,
∴∠CAB=∠CAO+∠BAO=90°,
∴CD===.