满分5 > 初中数学试题 >

在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠B...

在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=manfen5.com 满分网∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)通过观察、测量、猜想:manfen5.com 满分网=______,并结合图2证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求manfen5.com 满分网的值.(用含α的式子表示)
manfen5.com 满分网
(1)由四边形ABCD是正方形,P与C重合,易证得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,证得∠GBO=∠EPO,则可利用ASA证得:△BOG≌△POE; (2)首先过P作PM∥AC交BG于M,交BO于N,易证得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF=BM.则可求得的值; (3)首先过P作PM∥AC交BG于点M,交BO于点N,由(2)同理可得:BF=BM,∠MBN=∠EPN,继而可证得:△BMN∽△PEN,然后由相似三角形的对应边成比例,求得的值. (1)证明:∵四边形ABCD是正方形,P与C重合, ∴OB=OP,∠BOC=∠BOG=90°, ∵PF⊥BG,∠PFB=90°, ∴∠GBO=90°-∠BGO,∠EPO=90°-∠BGO, ∴∠GBO=∠EPO, 在△BOG和△POE中, ∵, ∴△BOG≌△POE(ASA); (2)【解析】 猜想. 证明:如图2,过P作PM∥AC交BG于M,交BO于N, ∴∠PNE=∠BOC=90°,∠BPN=∠OCB. ∵∠OBC=∠OCB=45°, ∴∠NBP=∠NPB. ∴NB=NP. ∵∠MBN=90°-∠BMN,∠NPE=90°-∠BMN, ∴∠MBN=∠NPE, 在△BMN和△PEN中, ∵, ∴△BMN≌△PEN(ASA), ∴BM=PE. ∵∠BPE=∠ACB,∠BPN=∠ACB, ∴∠BPF=∠MPF. ∵PF⊥BM, ∴∠BFP=∠MFP=90°. 在△BPF和△MPF中, , ∴△BPF≌△MPF(ASA).                                         ∴BF=MF.  即BF=BM. ∴BF=PE. 即; (3)解法一:如图3,过P作PM∥AC交BG于点M,交BO于点N, ∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°, 由(2)同理可得:BF=BM,∠MBN=∠EPN, ∵∠BNM=∠PNE=90°, ∴△BMN∽△PEN. ∴. 在Rt△BNP中,tanα=, ∴=tanα. 即=tanα. ∴=tanα.                解法二:如图3,过P作PM∥AC交BG于点M,交BO于点N, ∴BO⊥PM,∠BPN=∠ACB=α, ∵∠BPE=∠ACB=α,PF⊥BM, ∴∠EPN=α.∠MBN=∠EPN=∠BPE=α. 设BF=x,PE=y,EF=m, 在Rt△PFB中,tan=, ∵PF=PE+EF=y+m, ∴x=(y+m)tan, 在Rt△BFE中,tan==, ∴m=x•tan, ∴x=(y+xtan)•tan, ∴x=y•tan+x•tan2, ∴(1-tan2)x=y•tan, ∴. 即. 解法三:如图3,过P作PM∥AC交BG于点M,交BO于点N, ∴∠BNP=∠BOC=90°. ∴∠EPN+∠NEP=90°. 又∵BF⊥PE, ∴∠FBE+∠BEF=90°. ∵∠BEF=∠NEP, ∴∠FBE=∠EPN, ∵PN∥AC, ∴∠BPN=∠BCA=α. 又∵∠BPE=∠ACB=α, ∴∠NPE=∠BPE=α. ∴∠FBE=∠BPE=∠EPN=α. ∵sin∠FPB=, ∴BP=,) ∵cos∠EPN=, ∴PN=PE•cos, ∵cos∠NPB=, ∴PN=BP•cosα, ∴EP•cos=BP•cosα, ∴EP•cos=•cosα, ∴.
复制答案
考点分析:
相关试题推荐
如图,正比例函数manfen5.com 满分网的图象与反比例函数manfen5.com 满分网(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由)

manfen5.com 满分网 查看答案
2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦.也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸从中摸出一个球,如果摸出的是红球.妹妹去听讲座,如果摸出的是白球,小明去听讲座.
(1)爸爸说这个办法不公平,请你用概率的知识解释原因.
(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,问摸球的结果是对小明有利还是对妹妹有利.说明理由.
查看答案
放风筝是大家喜爱的一种运动.星期天的上午小明在大洲广场上放风筝.如图他在A处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D处.此时风筝线AD与水平线的夹角为30°. 为了便于观察.小明迅速向前边移动边收线到达了离A处7米的B处,此时风筝线BD与水平线的夹角为45°.已知点A、B、C在冋一条直线上,∠ACD=90°.请你求出小明此吋所收回的风筝线的长度是多少米?(本题中风筝线均视为线段,manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732.最后结果精确到1米)

manfen5.com 满分网 查看答案
为迎接建党90周年,某校组织了以“党在我心中”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.
manfen5.com 满分网
根据以上信息,解答下列问题:
(1)求本次抽取了多少份作品,并补全两幅统计图;
(2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?
查看答案
(1)计算:|-manfen5.com 满分网|-(-4)-1+manfen5.com 满分网-2cos30°;
(2)先化简分式(manfen5.com 满分网-manfen5.com 满分网)÷manfen5.com 满分网,再从不等式组manfen5.com 满分网的解集中取一个合适的值代入,求原分式的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.