满分5 > 初中数学试题 >

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(...

manfen5.com 满分网如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.
(1)当b=3时,
①求直线AB的解析式;
②若点P′的坐标是(-1,m),求m的值;
(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;
(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.
(1)①利用待定系数法即可求得函数的解析式; ②把(-1,m)代入函数解析式即可求得m的值; (2)可以证明△PP′D∽△ACD,根据相似三角形的对应边的比相等,即可求解; (3)分P在第一,二,三象限,三种情况进行讨论.利用相似三角形的性质即可求解. 【解析】 (1)①设直线AB的解析式为y=kx+3, 把x=-4,y=0代入得:-4k+3=0, ∴k=, ∴直线的解析式是:y=x+3, ②由已知得点P的坐标是(1,m), ∴m=×1+3=; (2)∵PP′∥AC, △PP′D∽△ACD, ∴=,即=, ∴a=; (3)以下分三种情况讨论. ①当点P在第一象限时, 1)若∠AP′C=90°,P′A=P′C(如图1) 过点P′作P′H⊥x轴于点H. ∴PP′=CH=AH=P′H=AC. ∴2a=(a+4) ∴a= ∵P′H=PC=AC,△ACP∽△AOB ∴==,即=, ∴b=2 2)若∠P′AC=90°,(如图2),则四边形P′ACP是矩形,则PP′=AC. 若△P´CA为等腰直角三角形,则:P′A=CA, ∴2a=a+4 ∴a=4 ∵P′A=PC=AC,△ACP∽△AOB ∴==1,即=1 ∴b=4 3)若∠P′CA=90°, 则点P′,P都在第一象限内,这与条件矛盾. ∴△P′CA不可能是以C为直角顶点的等腰直角三角形. ②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形; ③当P在第三象限时,∠P′AC为钝角(如图4),此时△P′CA不可能是等腰直角三角形. 所有满足条件的a,b的值为:,.
复制答案
考点分析:
相关试题推荐
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售单价y与上市时间t的关系可以近似地用图①的一条折线表示;西红柿的种植成本单价z与上市时间t的关系可以近似地用图②的一段抛物线表示.
manfen5.com 满分网
(1)直接写出图①表示的市场销售单价y与时间t的函数关系式;
(2)求出图②中表示的种植成本单价z与上市时间t的函数关系式;
(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的西红柿纯收益单价最大?最大是多少?
(注:市场销售单价和各种植成本单价的单位:元/100kg,时间单位:天)
查看答案
已知:一张直角三角形纸片如图1放置在平面直角坐标系中,一条直角边OA落在x轴正半轴上,另一条直角边OB落在y轴正半轴上,且OA=8,OB=6.现再找一个与Rt△ABO有一条公共边且不重叠的三角形,使它们拼在一起后能构成一个大的等腰三角形.例如:如图2,△CBO与△ABO拼成等腰△ABC,则点C坐标为(-2,0).请直接写出除图2情况外,其他所有的所拼成的等腰三角形中除A、B、O三点外另一顶点P的坐标.
manfen5.com 满分网
查看答案
平面上的点M关于直线l有唯一的轴对称点M′,这样平面上的任意一点就与该点关于这条直线的轴对称点之间建立了一种对应关系,我们把这种对应关系叫做点M关于直线l的轴对称变换,记为Mmanfen5.com 满分网M′(l),点M的轴对称点就记为M′(l),如图(1)所示.如果先作平面上的点M关于直线l的轴对称变换,Mmanfen5.com 满分网M′(l),M得到对应点M′(l),然后,再作M′(l)关于另外一条直线m的轴对称变换,M′(l)manfen5.com 满分网M″(l,m),这样点M就与该点关于直线l和m的轴对称点M″(l,m)之 间建立了一种对应关系,我们把这种对应关系就叫做点M关于直线l和m的轴对称变换,M′(l)manfen5.com 满分网M″(l,m),记为,M的对应点就记为M″(l,m).如图(2),M是平面上的一点,直线l、m相交所成的角为θ(0°<θ≤90°),且交点为O,请回答如下问题:
(1)在备用图中,请画出M′(l)和M″(l,m)(保留画图痕迹).
(2)当θ=______°时,M与M″(l,m)关于点O成中心对称.
(3)试探究∠MOM′′与θ之间的数量关系,并说明理由.
manfen5.com 满分网
查看答案
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若过A点且与BC平行的直线交BE的延长线于G点,连接CG.当△ABC是等边三角形时,求∠AGC的度数.

manfen5.com 满分网 查看答案
如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)观察猜想BE与DG之间的大小关系,并证明你的结论;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.