满分5 > 初中数学试题 >

如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象...

manfen5.com 满分网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
(1)因为直线y=x+m过点A,将A点坐标直接代入解析式即可求得m的值;设出二次函数的顶点式,将(3,4)代入即可; (2)由于P和E的横坐标相同,将P点横坐标代入直线和抛物线解析式,可得其纵坐标表达式,h即为二者之差;根据P、E在二者之间,所以可知x的取值范围是0<x<3; (3)先假设存在点P,根据四边形DCEP是平行四形的条件进行推理,若能求出P点坐标,则证明存在点P,否则P点不存在. 【解析】 (1)∵点A(3,4)在直线y=x+m上, ∴4=3+m.(1分) ∴m=1.(2分) 设所求二次函数的关系式为y=a(x-1)2.(3分) ∵点A(3,4)在二次函数y=a(x-1)2的图象上, ∴4=a(3-1)2, ∴a=1.(4分) ∴所求二次函数的关系式为y=(x-1)2. 即y=x2-2x+1.(5分) (2)设P、E两点的纵坐标分别为yP和yE. ∴PE=h=yP-yE(6分) =(x+1)-(x2-2x+1)(7分) =-x2+3x.(8分) 即h=-x2+3x(0<x<3).(9分) (3)存在.(10分) 解法1:要使四边形DCEP是平行四边形,必需有PE=DC.(11分) ∵点D在直线y=x+1上, ∴点D的坐标为(1,2), ∴-x2+3x=2. 即x2-3x+2=0.(12分) 解之,得x1=2,x2=1(不合题意,舍去)(13分) ∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.(14分) 解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.(11分) 设直线CE的函数关系式为y=x+b. ∵直线CE经过点C(1,0), ∴0=1+b, ∴b=-1. ∴直线CE的函数关系式为y=x-1. ∴ 得x2-3x+2=0.(12分) 解之,得x1=2,x2=1(不合题意,舍去) ∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.
复制答案
考点分析:
相关试题推荐
如图,以△ABC的边AB为直径的⊙O与边BC交于点D,过点D作DE⊥AC,垂足为E,延长AB、ED交于点F,AD平分∠BAC.
(1)求证:EF是⊙O的切线;
(2)若AE=3,BF=2,求⊙O的半径.

manfen5.com 满分网 查看答案
某专买店购进一批新型计算器,每只进价12元,售价20元多买优惠:凡一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元、例如:某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.设一次性购买计算器为x只,所获利润为y元.
(1)若该专卖店在确保不亏本的前提下进行优惠销售,试求y与x(x>10)之间的函数关系式,并写出自变量x的取值范围;
(2)若该专买店想获得200元的销售利润,又想让消费者多获得实惠,应将每只售价定为多少元?
(3)某天,顾客甲买了42只新型计算器,顾客乙买了52只新型计算器,店主却发现卖42只赚的钱反而比卖52只赚的钱多,你能用数学知识解释这一现象吗?
查看答案
如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.
(1)求∠CAE的度数;
(2)求这棵大树折断前的高度.(结果精确到个位,参考数据:manfen5.com 满分网=1.4,manfen5.com 满分网=1.7,manfen5.com 满分网=2.4).
manfen5.com 满分网
查看答案
如图,一次函数y=-manfen5.com 满分网x-2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=manfen5.com 满分网(x<0)的图象于点Q,且tan∠AOQ=manfen5.com 满分网
(1)求k的值;
(2)连接OP、AQ,求证:四边形APOQ是菱形.

manfen5.com 满分网 查看答案
“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:
manfen5.com 满分网
(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;
(2)求图②中表示家长“无所谓”的圆心角的度数;
(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.