如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2
,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
考点分析:
相关试题推荐
在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:
(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;
(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;
(3)量出A,B两点间的距离为4.5米.
请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
查看答案
在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:
(1)两次取出小球上的数字相同;
(2)两次取出小球上的数字之和大于10.
查看答案
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A
1,在网格中画出平移后得到的△A
1B
1C
1;
(2)把△A
1B
1C
1绕点A
1按逆时针方向旋转90°,在网格中画出旋转后的△A
1B
2C
2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
查看答案
(1)计算:2sin60°-
+
(2)解方程:x
2+4x+1=0.
查看答案
阅读材料,完成填空:
在平面直角坐标系中,当函数的图象产生平移,则函数的解析式会产生有规律的变化;反之,我们可以通过分析不同解析式的变化规律,推想到相应的函数图象间彼此的位置和形状的关联.
不妨约定,把函数图象先往左侧平移2个单位,再往上平移1各单位,则不同类型函数解析式的变化可举例如下:
y=3x
2→y=3(x+2)
2+1;y=3x
3→y=3(x+2)
3+1;y=3
→y=3
+1;y=3
→y=3
+1;y=
→y=
+1;…
(1)若把函数y=
+1图象再往
平移
个单位,所得函数图象的解析式为y=
+1;
(2)分析下列关于函数y=
+1图象性质的描述:
①图象关于(1,1)点中心对称;②图象必不经过第二象限;③图象与坐标轴共有2个交点;④当x>0时,y随着x取值的变大而减小.其中正确的是:
.(填序号)
查看答案