满分5 > 初中数学试题 >

综合与实践:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B...

综合与实践:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求直线AC的解析式及B、D两点的坐标;
(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.

manfen5.com 满分网
(1)根据抛物线的解析式可得出A、B、C、D的坐标,设AC解析式为y=k1x+b1(k1≠0),利用待定系数法求解即可. (2)先根据题意结合图形,画出点P和点Q的位置,然后利用平行线的性质,及抛物线上点的坐标特点可求出三个Q的坐标. (3)因为BD的长固定,要使△BDM的周长最小,只需满足BM+DM的值最小即可,作点B关于AC的对称点B',连接B'D,则与AC交点即是点M的位置,然后利用相似三角形的性质求出B'的坐标,得出B'D的解析式,继而联立AC与B'D的解析式可得出点M的坐标. 【解析】 (1)当y=0时,-x2+2x+3=0,解得x1=-1,x2=3. ∵点A在点B的左侧, ∴A、B的坐标分别为(-1,0),(3,0). 当x=0时,y=3. ∴C点的坐标为(0,3) 设直线AC的解析式为y=k1x+b1(k1≠0), 则, 解得, ∴直线AC的解析式为y=3x+3. ∵y=-x2+2x+3=-(x-1)2+4, ∴顶点D的坐标为(1,4).  (2)抛物线上有三个这样的点Q, ①当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐标为(2,3); ②当点Q在点Q2位置时,点Q2的纵坐标为-3,代入抛物线可得点Q2坐标为(1+,-3); ③当点Q在Q3位置时,点Q3的纵坐标为-3,代入抛物线解析式可得,点Q3的坐标为(1-,-3); 综上可得满足题意的点Q有三个,分别为:Q1(2,3),Q2(1+,-3),Q3(1-,-3).  (3)过点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC 的对称点.连接B′D交直线AC于点M,则点M为所求, 过点B′作B′E⊥x轴于点E. ∵∠1和∠2都是∠3的余角, ∴∠1=∠2. ∴Rt△AOC∽Rt△AFB, ∴, 由A(-1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3, ∴AC=,AB=4. ∴, ∴BF=, ∴BB′=2BF=, 由∠1=∠2可得Rt△AOC∽Rt△B′EB, ∴, ∴,即. ∴B′E=,BE=, ∴OE=BE-OB=-3=. ∴B′点的坐标为(-,). 设直线B′D的解析式为y=k2x+b2(k2≠0). ∴, 解得, ∴直线B'D的解析式为:y=x+, 联立B'D与AC的直线解析式可得:, 解得, ∴M点的坐标为(,).
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
(1)求证:BC是⊙O的切线;
(2)连接AF,BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=manfen5.com 满分网,求⊙O的半径.

manfen5.com 满分网 查看答案
已知抛物线的函数解析式为y=ax2+bx-3a(b<0),若这条抛物线经过点(0,-3),方程ax2+bx-3a=0的两根为x1,x2,且|x1-x2|=4.
(1)求抛物线的顶点坐标.
(2)已知实数x>0,请证明x+manfen5.com 满分网≥2,并说明x为何值时才会有x+manfen5.com 满分网=2.
查看答案
小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
manfen5.com 满分网
(1)观察图象,直接写出日销售量的最大值;
(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?
查看答案
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.请你判定四边形BMDN是什么特殊四边形,并说明理由.

manfen5.com 满分网 查看答案
我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).
(1)实验所用的乙种树苗的数量是______株.
(2)求出丙种树苗的成活数,并把图2补充完整.
(3)你认为应选哪种树苗进行推广?请通过计算说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.