满分5 > 初中数学试题 >

如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥...

manfen5.com 满分网如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;
(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
(1)由同角的余角相等得到∠1=∠2,故有Rt△ABE∽Rt△ECF⇒AB:CE=BE:CF⇒EC:CF=AB:BE=5:2; (2)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP; (3)先证△DAM≌△ABE,继而可得四边形DMEP是平行四边形. 【解析】 (1)如图1.∵AE⊥EF, ∴∠2+∠3=90°, ∵四边形ABCD为正方形, ∴∠B=∠C=90°, ∵∠1+∠3=90°, ∴∠1=∠2, ∴△ABE∽△ECF, ∴AB:CE=BE:CF, ∴EC:CF=AB:BE=5:2 (2)如图2,在AB上取BG=BE,连接EG, ∵ABCD为正方形, ∴AB=BC, ∵BE=BG, ∴AG=EC, 在△AGE和△ECP中 , ∴△AGE≌△ECP(ASA), ∴AE=EP; (3)存在.顺次连接DMEP. 如图3. 在AB取点M,使AM=BE, ∵AE⊥EF, ∴∠2+∠3=90°, ∵四边形ABCD为正方形,∴∠B=∠BCD=90°, ∴∠1+∠3=90°, ∴∠1=∠2, ∵∠DAM=∠ABE=90°,DA=AB, ∴△DAM≌△ABE(SAS), ∴DM=AE, ∵AE=EP, ∴DM=PE, ∵∠1=∠5,∠1+∠4=90°, ∴∠4+∠5=90°, ∴DM⊥AE, ∴DM∥PE ∴四边形DMEP是平行四边形.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC切于点E,且AB=BE.
(1)求证:AB是⊙O的切线;
(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.

manfen5.com 满分网 查看答案
一辆经营长途运输的货车在高速公路的A处加满油后匀速行驶,下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:
行驶时间 (时)122.5
余油量 (升)100806050
(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)
(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达B处,求此时油箱内余油多少升?
查看答案
某渔船上的渔民在A处观测到灯塔M在北偏东60°方向处,这艘渔船以每小时28海里的速度向正东方向航行,半小时后到达B处,在B处观测到灯塔M在北偏东30°方向处.问B处与灯塔M的距离是多少海里?

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.
(1)求证:四边形AEFG是平行四边形;
(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.

manfen5.com 满分网 查看答案
如图,在下面的方格图中,将△ABC先向右平移四个单位得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2,请依次作出△A1B1C1和△A1B2C2

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.