我市某服装厂生产的服装供不应求,A车间接到生产一批西服的紧急任务,要求必须在12天内完成.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高,每天生产的西服数量y(套)与时间x(天)的关系如下表:
时间x(天) | 1 | 2 | 4 | 7 | … |
每天产量y(套) | 22 | 24 | 28 | 34 | … |
平均每套西服的成本z(元)与时间x(天)的关系如图:
请解答下列问题.
(1)求每天生产的西服数量y(套)与x(天)之间的关系式及成本z(元)与x(天)之间的关系式.
(2)已知这批西服的订购价格为每套1400元,设该车间每天的利润为W(元),试求出日利润W(元)与时间x(天)之间的函数关系式,并求出哪一天该车间获得最大利润,最大利润是多少元?
(3)在实际销售中,厂家决定从第13天起,每天按日最大利润进行生产并完全售出.生产7天后,由于机器损耗等原因,平均每套西服的成本比日最大利润时增加0.5a%(a<50),所以厂家把定购价提高了200元再生产8天,但这8天的日销量比日最大利润时的销量下降了a%,根据销售记录显示,这8天的销售利润的总和与前7天的销售利润总和持平,求整数a.
(
,
)
考点分析:
相关试题推荐
已知:如图,四边形ABCD中AC、BD相于点O,AB=AC,AB⊥AC,BD平分∠ABC且BD⊥CD,OE⊥BC于E,OA=1.
(1)求OC的长;
(2)求证:BO=2CD.
查看答案
交警对“餐饮一条街”旁的一个路口在某一段时间内来往车辆的车速情况进行了统计,并制成了如下两幅不完整的统计图:
(1)求这些车辆行驶速度的平均数和中位数,并将该条统计图补充完整;
(2)该路口限速60千米/时.经交警逐一排查,在超速的车辆中,车速为80千米/时的车辆中有2位驾驶员饮酒,车速为70千米/时的车辆中有1位驾驶员饮酒.若交警不是逐一排查,而是分别在车速为80千米/时和70千米/时的车辆中各随机拦下一位驾驶员询问,请你用列表法或画树状图的方法求出所选两辆车的驾驶员均饮酒的概率.
查看答案
已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点A、B,与反比例函数在第一象限内的图象交于点C,CD⊥x轴于点D,OD=3,点A为OD的中点,tan∠OBD=
.
(1)求直线AB和该反比例函数的解析式;
(2)求四边形OBDC的面积.
查看答案
先化简,再求值:(
-
)÷
,其中a是方程
-
=1的解.
查看答案
如图,在△ABC中,AD是BC边上的高,∠C=30°,AC=6,AB=4,求BD的长.(结果保留根号)
查看答案