满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,抛物线y=x2-x-10与y轴的交点为点B,过点...

如图,在平面直角坐标系xOy中,抛物线y=manfen5.com 满分网x2-manfen5.com 满分网x-10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<manfen5.com 满分网时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

manfen5.com 满分网
(1)已知抛物线的解析式,当x=0时,可求得B的坐标;由于BC∥OA,把B的纵坐标代入抛物线的解析式,可求出C的坐标;当y=0时,可求出A的坐标.求顶点坐标时用公式法或配方法都可以; (2)当四边形ACQP是平行四边形时,AP、CQ需满足平行且相等的条件.已知BC∥OA,只需求t为何值时,AP=CQ,可先用t表示AP,CQ,再列出方程即可求出t的值; (3)当0<t<时,根据OA=18,P点的速度为4单位/秒,可得出P点总在OA上运动.△PQF中,Q到PF的距离是定值即OB的长,因此只需看PF的值是否有变化即可得出S△PQF是否为定值,已知QC∥PF,根据平行线分线段成比例定理可得出:,因此可得出OP=AF,那么PF=PA+AF=PA+OP=OA,由于OA的长为定值即PF的长为定值,因此△PQF的面积是不会变化的.其面积的值可用OA•OB求出; (4)可先用t表示出P,F,Q的坐标,然后根据坐标系中两点间的距离公式得出PF2,PQ2,FQ2,进而可分三种情况进行讨论: ①△PFQ以PF为斜边.则PF2=PQ2+FQ2,可求出t的值. ②△PFQ以PQ为斜边,方法同① ③△PFQ以FQ为斜边,方法同①. 综合三种情况即可得出符合条件的t的值. 【解析】 (1)y=(x2-8x-180), 令y=0,得x2-8x-180=0, 即(x-18)(x+10)=0, ∴x=18或x=-10. ∴A(18,0) 在y=x2-x-10中,令x=0得y=-10, 即B(0,-10). 由于BC∥OA, 故点C的纵坐标为-10, 由-10=x2-x-10得, x=8或x=0, 即C(8,-10)且易求出顶点坐标为(4,), 于是,A(18,0),B(0,-10),C(8,-10),顶点坐标为(4,); (2)若四边形PQCA为平行四边形,由于QC∥PA. 故只要QC=PA即可, 而PA=18-4t,CQ=t, 故18-4t=t得t=; (3)设点P运动t秒,则OP=4t,CQ=t,0<t<4.5, 说明P在线段OA上,且不与点OA、重合, 由于QC∥OP知△QDC∽△PDO,故 ∵AF=4t=OP ∴PF=PA+AF=PA+OP=18 又∵点Q到直线PF的距离d=10, ∴S△PQF=PF•d=×18×10=90, 于是△PQF的面积总为90; (4)设点P运动了t秒,则P(4t,0),F(18+4t,0),Q(8-t,-10)t∈(0,4.5). ∴PQ2=(4t-8+t)2+102=(5t-8)2+100 FQ2=(18+4t-8+t)2+102=(5t+10)2+100. ①若FP=FQ,则182=(5t+10)2+100. 即25(t+2)2=224,(t+2)2=. ∵0≤t≤4.5, ∴2≤t+2≤6.5, ∴t+2==. ∴t=-2, ②若QP=QF,则(5t-8)2+100=(5t+10)2+100. 即(5t-8)2=(5t+10)2,无0≤t≤4.5的t满足. ③若PQ=PF,则(5t-8)2+100=182. 即(5t-8)2=224,由于≈15,又0≤5t≤22.5, ∴-8≤5t-8≤14.5,而14.52=()2=<224. 故无0≤t≤4.5的t满足此方程. 注:也可解出t=<0或t=>4.5均不合题意, 故无0≤t≤4.5的t满足此方程. 综上所述,当t=-2时,△PQF为等腰三角形.
复制答案
考点分析:
相关试题推荐
有一种螃蟹,从海里捕获后不放养最多只能存活两天,如果在池塘里放养,可以延长存活时间,但每天也有一定数量的螃蟹死去,假设放养期内螃蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活螃蟹1000千克放养在池塘内,此时市场价为每千克30元.据推测,此后每千克活螃蟹的市场价在前5天内不发生变化,从第6天开始每天涨价1元,放养30后,每天涨价2元,但是,放养一天需各种费用支出400元,且每天还有10千克螃蟹死去,假设死螃蟹当天全部出售,售价都是每千克20元.
(1)写出市场价P(元)与放养时间X(天)之间的函数关系;
(2)如果放养X天后将活螃蟹一次性出售,并记1000千克螃蟹的销售总额Q(元),请求出Q(元)与放养时间X(天)之间的函数关系;
(3)该经销商将这批螃蟹放养多少天后出售,可获得最大利润?并求出最大利润.
查看答案
如图,某天然气公司的主输气管道从A市的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN的长?

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.
求证:(1)AC是⊙D的切线;
(2)AB+EB=AC.

manfen5.com 满分网 查看答案
上海世博会门票价格如表所示:
门票价格一览表
指定日普通票200元
平日优惠票100元
某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.
(1)有多少种购票方案?列举所有可能结果;
(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.
查看答案
在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,过点M作MP⊥MQ交AB于点P,交NC于点Q,试求BP2,PQ2,CQ2三者之间的数量关系,并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.