满分5 > 初中数学试题 >

如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC. ...

如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.
manfen5.com 满分网
(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;
(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.
(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AH⊥CG. (2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°-∠6,即∠7+∠CEH=90°,由此得证. 【解析】 (1)答:AE⊥GC;(1分) 证明:延长GC交AE于点H, 在正方形ABCD与正方形DEFG中, AD=DC,∠ADE=∠CDG=90°, DE=DG, ∴△ADE≌△CDG, ∴∠1=∠2;(3分) ∵∠2+∠3=90°, ∴∠1+∠3=90°, ∴∠AHG=180°-(∠1+∠3)=180°-90°=90°, ∴AE⊥GC.(5分) (2)答:成立;(6分) 证明:延长AE和GC相交于点H, 在正方形ABCD和正方形DEFG中, AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°, ∴∠1=∠2=90°-∠3; ∴△ADE≌△CDG, ∴∠5=∠4;(8分) 又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°, ∴∠6=∠7, 又∵∠6+∠AEB=90°,∠AEB=∠CEH, ∴∠CEH+∠7=90°, ∴∠EHC=90°, ∴AE⊥GC.(10分)
复制答案
考点分析:
相关试题推荐
某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.
(1)该店订购这两款运动服,共有哪几种方案?
(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?
查看答案
已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;
(2)说出抛物线y=x2-2x-3可由抛物线y=x2如何平移得到?
(3)求四边形OCDB的面积.

manfen5.com 满分网 查看答案
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.

manfen5.com 满分网 查看答案
某课题小组为了了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A、B、C、D四种型号的销售做了统计,绘制成如下两幅统计图(均不完整)
(1)该店第一季度售出这种品牌的电动自行车共多少辆?
(2)把两幅统计图补充完整;
(3)若该专卖店计划订购这四款型号的电动自行车1800辆,求C型电动自行车应订购多少辆?

manfen5.com 满分网 查看答案
山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的,图3是图2放大后的一部分,虚线给出了作图提示,请用圆规和直尺画图.
manfen5.com 满分网
(1)根据图2将图3补充完整;
(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.