满分5 > 初中数学试题 >

已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作...

已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.

manfen5.com 满分网
(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度; (2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证. (1)【解析】 ∵四边形ABCD是菱形, ∴AB∥CD, ∴∠1=∠ACD, ∵∠1=∠2, ∴∠ACD=∠2, ∴MC=MD, ∵ME⊥CD, ∴CD=2CE, ∵CE=1, ∴CD=2, ∴BC=CD=2; (2)证明:如图,∵F为边BC的中点, ∴BF=CF=BC, ∴CF=CE, 在菱形ABCD中,AC平分∠BCD, ∴∠ACB=∠ACD, 在△CEM和△CFM中, ∵, ∴△CEM≌△CFM(SAS), ∴ME=MF, 延长AB交DF的延长线于点G, ∵AB∥CD, ∴∠G=∠2, ∵∠1=∠2, ∴∠1=∠G, ∴AM=MG, 在△CDF和△BGF中, ∵, ∴△CDF≌△BGF(AAS), ∴GF=DF, 由图形可知,GM=GF+MF, ∴AM=DF+ME.
复制答案
考点分析:
相关试题推荐
①解方程:manfen5.com 满分网-1=manfen5.com 满分网
②先化简,再求值.(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-manfen5.com 满分网
查看答案
如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是   
manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=   
manfen5.com 满分网 查看答案
化简manfen5.com 满分网的结果是    查看答案
有理数manfen5.com 满分网的倒数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.