满分5 > 初中数学试题 >

几何模型: 条件:如下图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一...

几何模型:
条件:如下图,A、B是直线l同旁的两个定点.
manfen5.com 满分网
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______
(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.
(1)由题意易得PB+PE=PD+PE=DE,在△ADE中,根据勾股定理求得即可; (2)作A关于OB的对称点A′,连接A′C,交OB于P,求A′C的长,即是PA+PC的最小值; (3)作出点P关于直线OA的对称点M,关于直线OB的对称点N,连接MN,它分别与OA,OB的交点Q、R,这时三角形PEF的周长=MN,只要求MN的长就行了. 【解析】 (1)∵四边形ABCD是正方形, ∴AC垂直平分BD, ∴PB=PD, 由题意易得:PB+PE=PD+PE=DE, 在△ADE中,根据勾股定理得,DE=; (2)作A关于OB的对称点A′,连接A′C,交OB于P, PA+PC的最小值即为A′C的长, ∵∠AOC=60° ∴∠A′OC=120° 作OD⊥A′C于D,则∠A′OD=60° ∵OA′=OA=2 ∴A′D= ∴; (3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN. 由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB, ∴∠MON=2∠AOB=2×45°=90°, 在Rt△MON中,MN===10. 即△PQR周长的最小值等于10.
复制答案
考点分析:
相关试题推荐
为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.
(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?
(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?
查看答案
阅读材料,解答问题.
例   用图象法解一元二次不等式:.x2-2x-3>0
【解析】
设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3>0的解集是______
(2)仿照上例,用图象法解一元二次不等式:x2-1>0.
manfen5.com 满分网
查看答案
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求manfen5.com 满分网的长.(结果保留π)

manfen5.com 满分网 查看答案
小红与小刚姐弟俩做掷硬币游戏,他们两人同时各掷一枚壹元硬币.
(1)若游戏规则为:当两枚硬币落地后正面朝上时,小红赢,否则小刚赢.请用画树状图或列表的方法,求小刚赢的概率;
(2)小红认为上面的游戏规则不公平,于是把规则改为:当两枚硬币正面都朝上时,小红得8分,否则小刚得4分.那么,修改后的游戏规则公平吗?请说明理由;若不公平,请你帮他们再修改游戏规则,使游戏规则公平(不必说明理由).
查看答案
如图,在等腰梯形ABCD中,E为底BC的中点,连接AE、DE.
求证:△ABE≌△DCE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.