满分5 > 初中数学试题 >

在△ABC中,AC=6,BC=8,AB=10,点D、E分别在AB、AC上,且DE...

在△ABC中,AC=6,BC=8,AB=10,点D、E分别在AB、AC上,且DE将△ABC的周长分成相等的两部分.设AE=x,AD=y,△ADE的面积为S.
(1)求出y关于x的函数关系式,并写出x的取值范围;
(2)求出S关于x的函数关系式;试判断S是否有最大值,若有,则求出其最大值,并指出此时△ADE的形状;若没有,请说明理由.

manfen5.com 满分网
(1)根据DE平分三角形ABC的周长,可得出的条件是AD+AE=BD+BC+CE,可先用x、y表示出CE、BD的长,然后根据上面得出的等量关系来求出yx的函数关系式.然后根据CE、AE的长均不为负数来求出x的取值范围. (2)求三角形ADE的面积,需要知道底边和高的长,已知了底边AE=x,关键是求出底边AE上的高,过D作DF⊥AE于F,可在直角三角形ADF中,根据∠A的正弦值,用AD的长表示出DF的值.然后根据三角形的面积公式可得出关于S、x、y的函数关系式,将(1)得出的关于x,y的函数关系式代入刚刚得出的函数式中即可得出关于S、x的函数关系式. 然后可根据函数的性质得出S的最大值以及对应的x的取值,有了x的值,即可通过此时AE、AD的长来判断出三角形ADE的形状. 【解析】 (1)∵DE平分△ABC的周长, ∴AD+AE==12,即y+x=12, ∴y关于x的函数关系式为:y=12-x(2≤x≤6). (2)过点D作DF⊥AC,垂足为F, ∵62+82=102,即AC2+BC2=AB2 ∴△ABC是直角三角形,∠ACB=90° ∴sin∠A=,即 ∴DF= ∴S=•AE•DF=•x•=-x2+x =-(x-6)2+, 故当x=6时,S取得最大值, 此时,y=12-6=6,即AE=AD. 因此,△ADE是等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=manfen5.com 满分网,BC=1,求⊙O的半径.

manfen5.com 满分网 查看答案
为了迎接“安徽省第十届花鼓灯会”的胜利召开,组委会准备用32000元和72000元分别购进甲、乙两种服装,已知需要的乙种服装数量是甲种服装的2倍,经市场调查发现,乙种服装每件售价比甲种贵20元.
(1)求这两种服装每件售价分别为多少元?
(2)由于组委会采购量大,供应商决定按组委会所购衬衫的平均单价的八折出售给组委会,求每件服装的统一售价.
查看答案
某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.
manfen5.com 满分网
请根据图中提供的信息,解答下面的问题:
(1)参加调查的学生共有______人,在扇形图中,表示“其他球类”的扇形的圆心角为______度;
(2)将条形图补充完整;
(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有______人.
查看答案
给出下列命题:
命题1:点(1,1)是直线y=x与双曲线y=manfen5.com 满分网的一个交点;
命题2:点(2,4)是直线y=2x与双曲线y=manfen5.com 满分网的一个交点;
命题3:点(3,9)是直线y=3x与双曲线y=manfen5.com 满分网的一个交点;
(1)请观察上面命题,猜想出命题n(n是正整数);
(2)证明你猜想的命题n是正确.
查看答案
解不等式组manfen5.com 满分网把它的解集在数轴上表示出来,并写出它的自然数解.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.