满分5 > 初中数学试题 >

在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在...

在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2.
(1)求直线AC及抛物线的函数表达式;
(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标;
(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切.

manfen5.com 满分网
(1)根据“过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点”,即可得到c-3=0,由此可得到C点的坐标,根据A、C的坐标即可求出直线AC的解析式;根据抛物线的对称轴及A、C的坐标,即可用待定系数法求出抛物线的解析式; (2)由于△ABP和△BPC等高不等底,那么它们的面积比等于底边的比,由此可求出AP、PC的比例关系,过P作x轴的垂线,通过构建的相似三角形的相似比即可求出P点的坐标; (3)①此题要分成两种情况讨论: 一、⊙Q与x轴相切,可设出Q点的横坐标,根据抛物线的解析式表示出它的纵坐标,若⊙Q与x轴相切,那么Q点的纵坐标的绝对值即为⊙Q的半径1,由此可列方程求出Q点的坐标; 二、⊙Q与y轴相切,方法同一; ②若⊙Q与x、y轴都相切,那么Q点的横、纵坐标的绝对值相等,可据此列方程求出Q点的坐标,进而可得到⊙Q的半径. 【解析】 (1)∵y=kx+m沿y轴向下平移3个单位后恰好经过原点, ∴m=3,C(0,3). 将A(-3,0)代入y=kx+3, 得-3k+3=0. 解得k=1. ∴直线AC的函数表达式为y=x+3. ∵抛物线的对称轴是直线x=-2 ∴, 解得; ∴抛物线的函数表达式为y=x2+4x+3; (2)如图,过点B作BD⊥AC于点D. ∵S△ABP:S△BPC=2:3, ∴AP•BD:PC•BD=2:3 ∴AP:PC=2:3. 过点P作PE⊥x轴于点E, ∵PE∥CO, ∴△APE∽△ACO, ∴==. ∴PE=OC=, ∴, 解得 ∴点P的坐标为; (3)(Ⅰ)假设⊙Q在运动过程中,存在⊙Q与坐标轴相切的情况. 设点Q的坐标为(x,y). ①当⊙Q与y轴相切时,有|x|=1,即x=±1. 当x=-1时,得y=(-1)2+4×(-1)+3=0,∴Q1(-1,0) 当x=1时,得y=12+4×1+3=8,∴Q2(1,8) ②当⊙Q与x轴相切时,有|y|=1,即y=±1 当y=-1时,得-1=x2+4x+3, 即x2+4x+4=0,解得x=-2, ∴Q3(-2,-1) 当y=1时,得1=x2+4x+3, 即x2+4x+2=0,解得, ∴,. 综上所述,存在符合条件的⊙Q,其圆心Q的坐标分别为Q1(-1,0),Q2(1,8),Q3(-2,-1),,. (Ⅱ)设点Q的坐标为(x,y). 当⊙Q与两坐标轴同时相切时,有y=±x. 由y=x,得x2+4x+3=x,即x2+3x+3=0, ∵△=32-4×1×=-3<0 ∴此方程无解. 由y=-x,得x2+4x+3=-x, 即x2+5x+3=0, 解得 ∴当⊙Q的半径时,⊙Q与两坐标轴同时相切.(12分)
复制答案
考点分析:
相关试题推荐
我们知道连接三角形两边中点的线段叫做三角形的中位线;通过证明可以得到“三角形的中位线平行于三角形的第三边,且等于第三边的一半”类似三角形中位线,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图在梯形ABCD中,AD∥BC,点E,F分别是AB、CD的中点,观察EF的位置,联想三角形中位线的性质,你能发现梯形的中位线有什么性质?证明你的结论.
(2)如果点E分线段AB为manfen5.com 满分网=manfen5.com 满分网,EF∥BC交CD于F,AD=3,BC=5,请你利用第(1)的结论求出EF=______(直接填写结果);
(3)如果点E分线段AB为manfen5.com 满分网=manfen5.com 满分网,EF∥BC交CD 于F,AD=a,BC=b,求EF的长.

manfen5.com 满分网 查看答案
在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为______km,a=______
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接PA、PB、PC、PD.
(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明;
(2)在(1)的条件下,若cos∠PCB=manfen5.com 满分网,求PA的长.

manfen5.com 满分网 查看答案
师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:
(1)徒弟平均每天组装多少辆摩托车(答案取整数)?
(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?
查看答案
如图,一次函数y=kx+2的图象与反比例函数y=manfen5.com 满分网的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,OC=OA.求一次函数与反比例函数的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.