如图,已知抛物线y=
x
2+bx+c与x轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.
查看答案
如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.
(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.
查看答案