满分5 > 初中数学试题 >

已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P...

已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.
(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当manfen5.com 满分网时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?
manfen5.com 满分网
(1)①由题意可得; ②由题意得到关于t的坐标.按照两种情形解答,从而得到答案. (2)①以点C为顶点的抛物线,解得关于t的根,又由过点D作DE⊥CP于点E,则∠DEC=∠AOB=90°,又由△DEC∽△AOB从而解得. ②先求得三角形COD的面积为定值,又由Rt△PCO∽Rt△OAB,在线段比例中t为是,h最大. 【解析】 (1)①C(1,2),Q(2,0) ②由题意得:P(t,0),C(t,-t+3),Q(3-t,0). 分两种情况讨论: 情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°, ∴CQ⊥OA, ∵CP⊥OA, ∴点P与点Q重合,OQ=OP, 即3-t=t, ∴t=1.5; 情形二:当△ACQ∽△AOB时,∠ACQ=∠AOB=90°, ∵OA=OB=3, ∴△AOB是等腰直角三角形, ∴△ACQ也是等腰直角三角形. ∵CP⊥OA, ∴AQ=2CP, 即t=2(-t+3), ∴t=2. ∴满足条件的t的值是1.5秒或2秒; (2)①由题意得:C(t,-), ∴以C为顶点的抛物线解析式是y=, 由, 即(x-t)2+(x-t)=0, ∴(x-t)(x-t+)=0, 解得. 过点D作DE⊥CP于点E,则∠DEC=∠AOB=90°, ∵DE∥OA, ∴∠EDC=∠OAB, ∴△DEC∽△AOB, ∴, ∵AO=4,AB=5,DE=, ∴CD=, ②∵,CD边上的高=, ∴, ∴S△COD为定值. 要使OC边上的高h的值最大,只要OC最短,因为当OC⊥AB时OC最短,此时OC的长为,∠BCO=90°, ∵∠AOB=90°, ∴∠COP=90°-∠BOC=∠OBA, 又∵CP⊥OA, ∴Rt△PCO∽Rt△OAB, ∴,OP=, 即t=, ∴当t为秒时,h的值最大.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.
(1)求m的值;
(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,OC,DC于点E,F,G,设线段EG的长为d,求d与t之间的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO,求此时t的值及点H的坐标.
manfen5.com 满分网
查看答案
在Rt△ABC中,∠ACB=90°,BD是⊙O的直径,弦DE与AC交于点E,且BD=BF.
(1)求证:AC是⊙O的切线;
(2)若BC=6,AD=4,求⊙O的面积.

manfen5.com 满分网 查看答案
如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上.
(1)画出△ABO绕点O逆时针旋转90°后得到的三角形;
(2)求△ABO在上述旋转过程中所扫过的面积.

manfen5.com 满分网 查看答案
将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中.
(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?
(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和小于4的概率(用树状图或列表法求解).
查看答案
如图,点B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.