某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润y
A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元) | 1 | 2 | 2.5 | 3 | 5 |
yA(万元) | 0.4 | 0.8 | 1 | 1.2 | 2 |
信息二:如果单独投资B种产品,则所获利润y
B(万元)与投资金额x(万元)之间存在二次函数关系:y
B=ax
2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出y
B与x的函数关系式;
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y
A与x之间的关系,并求出y
A与x的函数关系式;
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
考点分析:
相关试题推荐
已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系.
(1)如图1,若AB=BC=AC,则AE与EF之间的数量关系是什么;
(2)如图2,若AB=BC,你在(1)中得到的结论是否发生变化?写出猜想,并加以证明;
(3)如图3,若AB=kBC,你在(1)中得到的结论是否发生变化?写出猜想不用证明.
查看答案
如图1,△ABC中,AD为BC边上的中线,则S
△ABD=S
△ADC,由这个结论解答下列问题:
(1)图2中,E,F分别为矩形ABCD的边AD,BC的中点,则S
阴和S
矩形ABCD之间满足的关系式为______;图3中,E,F分别为平行四边形ABCD的边AD,BC的中点,则S
阴和S
平行四边形ABCD之间满足的关系式为______;
(2)图4中,E,F分别为四边形ABCD的边AD,BC的中点,则S
阴和S
四边形ABCD之间满足的关系式为______;
(3)解决问题:如图5中,E、G、F、H分别为任意四边形ABCD的边AD,AB,BC,CD的中点,并且图中四个小三角形的面积的和为1,即S
1+S
2+S
3+S
4=1,求S
阴的值.(写出过程)
查看答案
如图,在直角坐标系中,△OBA∽△DOC,边OA、OC都在x轴的正半轴上,点B的坐标为(6,8),∠BAO=∠OCD=90°,OD=5.反比例函数
的图象经过点D,交AB边于点E.
(1)求k的值.
(2)求BE的长.
查看答案
为了进一步了解某校九年级学生的身体素质情况,体育老师对该校九年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下所示:
组别 | 次数x | 频数(人数) |
第1组 | 80≤x<100 | 6 |
第2组 | 100≤x<120 | 8 |
第3组 | 120≤x<140 | 12 |
第4组 | 140≤x<160 | a |
第5组 | 160≤x<180 | 6 |
请结合图表完成下列问题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该校九年级(1)班学生进行一分钟跳绳不合格的概率是多少?
查看答案
如图,为测量某塔AB的高度,在离塔底部10米处目测其塔顶A,仰角为60°,目高1.5米,试求该塔的高度.(
≈1.41,
≈1.73)
查看答案