满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动...

如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2manfen5.com 满分网
(1)求点D的坐标,并直接写出t的取值范围.
(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.
(3)在(2)的条件下,t为何值时,四边形APQF是梯形?

manfen5.com 满分网
(1)利用勾股定理求出PC的长度,然后利用矩形的性质确定D点的坐标;自变量的取值范围由动点到达终点的时间来确定; (2)本问关键是利用相似三角形与翻折变换的性质,求出S的表达式.注意求图形面积的方法S=S梯形AOCF+S△FCE-S△AOE.经化简计算后,S=32为定值,所以S不变; (3)由四边形APQF是梯形,可得PQ∥AF,从而得到相似三角形△CPQ∽△DAF;再由线段比例关系求出时间t. 【解析】 (1)由题意可知,当t=2(秒)时,OP=4,CQ=2, 在Rt△PCQ中,由勾股定理得:PC===4, ∴OC=OP+PC=4+4=8, 又∵矩形AOCD,A(0,4),∴D(8,4). 点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4. (2)结论:△AEF的面积S不变化. ∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC, ∴,即,解得CE=. 由翻折变换的性质可知:DF=DQ=4-t,则CF=CD+DF=8-t. S=S梯形AOCF+S△FCE-S△AOE =(OA+CF)•OC+CF•CE-OA•OE =[4+(8-t)]×8+(8-t)•-×4×(8+) 化简得:S=32为定值. 所以△AEF的面积S不变化,S=32. (3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF. 由PQ∥AF可得:△CPQ∽△DAF, ∴,即,化简得t2-12t+16=0, 解得:t1=6+2,t2=6-2, 由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去. ∴当t=(6-2)秒时,四边形APQF是梯形.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q.
(1)当点P在线段AB上运动(不与A,B重合)时,求证:OA•BQ=AP•BP;
(2)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m的函数解析式,并判断l是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;
(3)直线AB上是否存在点P,使△POQ为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)若AD=4,BC=9,求⊙O的半径R.
查看答案
某商场购进一批单价为16元的日用品,销售一段时间后,经调查发现,若按每件20元的价格销售时,每月能卖360件;若按每件25元的价格销售时,每月能卖210件,若每月销售件数y(件)与价格x(元/件)满足关系y=kx+b
(1)确定y与x的函数关系式,并指出x的取值范围;
(2)为了使每月获得利润为1800元,问商品应定为每件多少元?
(3)为了获得了最大的利润,商品应定为每件多少元?
查看答案
如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.
manfen5.com 满分网
查看答案
“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:
manfen5.com 满分网
(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;
(2)求图②中表示家长“无所谓”的圆心角的度数;
(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.