满分5 > 初中数学试题 >

如图,已知抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0),抛物线的顶...

如图,已知抛物线y=a(x-1)2+3manfen5.com 满分网(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

manfen5.com 满分网
(1)将A的坐标代入抛物线y=a(x-1)2+3(a≠0)可得a的值,即可得到抛物线的解析式; (2)易得D的坐标,过D作DN⊥OB于N;进而可得DN、AN、AD的长,根据平行四边形,直角梯形,等腰梯形的性质,用t将其中的关系表示出来,并求解可得答案; (3)根据(2)的结论,易得△OCB是等边三角形,可得BQ、PE关于t的关系式,将四边形的面积用t表示出来,进而分析可得最小值及此时t的值,进而可求得PQ的长. 【解析】 (1)∵抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0), ∴0=9a+3, ∴a=-(1分) ∴二次函数的解析式为:y=-x2+x+;(3分) (2)①∵D为抛物线的顶点, ∴D(1,3), 过D作DN⊥OB于N,则DN=3,AN=3, ∴AD==6, ∴∠DAO=60°.(4分) ∵OM∥AD, ①当AD=OP时,四边形DAOP是平行四边形, ∴OP=6, ∴t=6(s).(5分) ②当DP⊥OM时,四边形DAOP是直角梯形, 过O作OH⊥AD于H,AO=2,则AH=1(如果没求出∠DAO=60°可由Rt△OHA∽Rt△DNA(求AH=1) ∴OP=DH=5,t=5(s)(6分) ③当PD=OA时,四边形DAOP是等腰梯形, 易证:△AOH≌△DPP′, ∴AH=CP, ∴OP=AD-2AH=6-2=4, ∴t=4(s)综上所述:当t=6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形;(7分) (3)由(2)及已知,∠COB=60°,OC=OB,△OCB是等边三角形则OB=OC=AD=6,OP=t,BQ=2t, ∴OQ=6-2t(0<t<3)过P作PE⊥OQ于E, 则PE=t(8分) ∴SBCPQ=×6×3×(6-2t)×t =(t-)2+(9分) 当t=时,四边形BCPQ的面积最小值为.(10分) ∴此时OQ=3,OP=,OE=; ∴QE=3-=,PE=, ∴PQ=.(11分)
复制答案
考点分析:
相关试题推荐
如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心,顺次连接A、O1、B、O2
(1)求证:四边形AO1BO2是菱形;
(2)过直径AC的端点C作⊙O1的切线CE交AB的延长线于E,连接CO2交AE于D,求证:CE=2O2D;
(3)在(2)的条件下,若△AO2D的面积为1,求△BO2D的面积.

manfen5.com 满分网 查看答案
某中学库存960套旧桌凳,修理后捐助贫困山区学校现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元.
(1)求甲、乙两个木工小组每天各修桌凳多少套?
(2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案供选择:①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理.你认为哪种方案既省时又省钱?试比较说明.
查看答案
在平面直角系中,已知△ABC和△DEF的顶点分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).按下列要求画图:
(1)画出△ABC以点O为位似中心,在y轴异侧放大2倍后得到的△A1B1C1,并写出点C1的坐标;
(2)画出△A1B1C1关于x轴的对称图形△A2B2C2.并写出点C2的坐标;
(3)指出△A2B2C2经过哪些变换,可以与△DEF拼成一个正方形.

manfen5.com 满分网 查看答案
某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:
manfen5.com 满分网
(1)在这次考察中一共调查了多少名学生?
(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?
(3)补全条形统计图;
(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?
查看答案
计算
(1)manfen5.com 满分网;       
(2)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.