满分5 > 初中数学试题 >

如图,在直角坐标平面内,函数(x>0,m是常数)的图象经过A(1,4),B(a,...

如图,在直角坐标平面内,函数manfen5.com 满分网(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)当AD=BC时,求直线AB的函数解析式.

manfen5.com 满分网
(1)由函数(x>0,m是常数)的图象经过A(1,4),可求m=4,由已知条件可得B点的坐标为(a,),又由△ABD的面积为4,即a(4-)=4,得a=3,所以点B的坐标为(3,); (2)依题意可证,=a-1,=a-1,,所以DC∥AB; (3)由于DC∥AB,当AD=BC时,有两种情况:①当AD∥BC时,四边形ADCB是平行四边形,由(2)得,点B的坐标是 (2,2),设直线AB的函数解析式为y=kx+b,用待定系数法可以求出解析式(把点A,B的坐标代入),是y=-2x+6. ②当AD与BC所在直线不平行时,四边形ADCB是等腰梯形,则BD=AC,可求点B的坐标是(4,1),设直线AB的函数解析式 y=kx+b,用待定系数法可以求出解析式(把点A,B的坐标代入),是y=-x+5. (1)【解析】 ∵函数y=(x>0,m是常数)图象经过A(1,4), ∴m=4. ∴y=, 设BD,AC交于点E,据题意,可得B点的坐标为(a,),D点的坐标为(0,),E点的坐标为(1,), ∵a>1, ∴DB=a,AE=4-. 由△ABD的面积为4,即a(4-)=4, 得a=3, ∴点B的坐标为(3,); (2)证明:据题意,点C的坐标为(1,0),DE=1, ∵a>1, 易得EC=,BE=a-1, ∴=a-1,=a-1. ∴且∠AEB=∠CED, ∴△AEB∽△CED, ∴∠ABE=∠CDE, ∴DC∥AB; (3)【解析】 ∵DC∥AB, ∴当AD=BC时,有两种情况: ①当AD∥BC时,四边形ADCB是平行四边形,由(2)得, , ∴a-1=1,得a=2. ∴点B的坐标是(2,2). 设直线AB的函数解析式为y=kx+b,把点A,B的坐标代入, 得, 解得. 故直线AB的函数解析式是y=-2x+6. ②当AD与BC所在直线不平行时,四边形ADCB是等腰梯形,则BD=AC, ∴a=4, ∴点B的坐标是(4,1). 设直线AB的函数解析式为y=kx+b,把点A,B的坐标代入, 得, 解得, 故直线AB的函数解析式是y=-x+5. 综上所述,所求直线AB的函数解析式是y=-2x+6或y=-x+5.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径是manfen5.com 满分网cm,ED=2cm,求AB的长.

manfen5.com 满分网 查看答案
如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.

manfen5.com 满分网 查看答案
计算:6tan230°-manfen5.com 满分网sin60°-2sin45°+manfen5.com 满分网
查看答案
manfen5.com 满分网两个反比例函数y=manfen5.com 满分网,y=manfen5.com 满分网在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=manfen5.com 满分网上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=manfen5.com 满分网的图象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′),
则|P2007Q2007|=    查看答案
若抛物线y=2x2-px+4p+1中不管p取何值时都通过定点,则定点坐标为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.