满分5 > 初中数学试题 >

如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从...

如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).
(1)求x为何值时,PQ⊥AC;
(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;
(3)当0<x<2时,求证:AD平分△PQD的面积;
(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).

manfen5.com 满分网
(1)若使PQ⊥AC,则根据路程=速度×时间表示出CP和CQ的长,再根据30度的直角三角形的性质列方程求解; (2)首先画出符合题意的图形,再根据路程=速度×时间表示出BP,CQ的长,根据等边三角形的三线合一求得PD的长,根据30度的直角三角形的性质求得PD边上的高,再根据面积公式进行求解; (3)根据三角形的面积公式,要证明AD平分△PQD的面积,只需证明O是PQ的中点.根据题意可以证明BP=CN,则PD=DN,再根据平行线等分线段定理即可证明; (4)根据(1)中求得的值即可分情况进行讨论. 【解析】 (1)当Q在AB上时,显然PQ不垂直于AC, 当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4-x; ∵AB=BC=CA=4, ∴∠C=60°; 若PQ⊥AC,则有∠QPC=30°, ∴PC=2CQ, ∴4-x=2×2x, ∴x=; (2)y=-x2+x, 如图,当0<x<2时,P在BD上,Q在AC上,过点Q作QN⊥BC于N; ∵∠C=60°,QC=2x, ∴QN=QC×sin60°=x; ∵AB=AC,AD⊥BC, ∴BD=CD=BC=2, ∴DP=2-x, ∴y=PD•QN=(2-x)•x=-x2+x; (3)当0<x<2时,在Rt△QNC中,QC=2x,∠C=60°; ∴NC=x, ∴BP=NC, ∵BD=CD, ∴DP=DN; ∵AD⊥BC,QN⊥BC, ∴AD∥QN, ∴OP=OQ, ∴S△PDO=S△DQO, ∴AD平分△PQD的面积; (4)显然,不存在x的值,使得以PQ为直径的圆与AC相离, 当x=或时,以PQ为直径的圆与AC相切, 当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC相交.
复制答案
考点分析:
相关试题推荐
如图,直线y=-x+20与x轴、y轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动.动直线EF从x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于E、F点.连接FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)当t=1秒时,求梯形OPFE的面积.
(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?
(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.
(1)求点B的坐标;
(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;
(3)当点P运动什么位置时,使得∠CPD=∠OAB,且manfen5.com 满分网,求这时点P的坐标.
查看答案
如图,抛物线的顶点坐标是manfen5.com 满分网,且经过点A(8,14).
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由.

manfen5.com 满分网 查看答案
如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.
(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)
(2)证明:四边形AHBG是菱形;
(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)

manfen5.com 满分网 查看答案
manfen5.com 满分网日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A处,观测到某港口城市P位于海检船的北偏西67.5°方向,海检船以21海里/时 的速度向正北方向行驶,下午2时海检船到达B处,这时观察到城市P位于海检船的南偏西36.9°方向,求此时海检船所在B处与城市P的距离?
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.