直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF∥AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.
(1)①直线y=x-6与坐标轴交点坐标是A(______,______),B(______,______);
②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);
(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);
(3)设四边形DCEF落在第一象限内的图形面积为S,求S关于t的函数表达式,并求出S的最大值.
考点分析:
相关试题推荐
在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).
(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;
(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:
①tan∠PEF的值是否发生变化?请说明理由;
②直接写出从开始到停止,线段EF的中点经过的路线长.
查看答案
如图①,在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等.
(1)求∠EAF的度数;
(2)在图①中,连接BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,得到图②.求证:MN
2=MB
2+ND
2;
(3)在图②中,若BE=4,DF=6,
,求AG,MN的长.
查看答案
甲、乙两车在连通A、B、C三地的公路上行驶,甲车从A地出发匀速向C地行驶,同时乙车从C地出发匀速向b地行驶,到达B地并在B地停留1小时后,按原路原速返回到C地.在两车行驶的过程中,甲、乙两车距B地的路程y(千米)与行驶时间x(小时)之间的函数图象如图所示,请结合图象回答下列问题:
(1)求甲、乙两车的速度,并在图中(_______)内填上正确的数:
(2)求乙车从B地返回到C地的过程中,y与x之间的函数关系式;
(3)当甲、乙两车行驶到距B地的路程相等时,甲、乙两车距B地的路程是多少?
查看答案
上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.
(1)求两批水果共购进了多少千克?
(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?
(利润率=
)
查看答案
某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出)
(1)实验所用的2号果树幼苗的数量是______株;
(2)请求出3号果树幼苗的成活数,并把图2的统计图补充完整;
(3)你认为应选哪一种品种进行推广?请通过计算说明理由.
查看答案