满分5 > 初中数学试题 >

已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC...

已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧manfen5.com 满分网上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于H.
(1)求证:AC丄BH;
(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.

manfen5.com 满分网
(1)连接AD,由圆周角定理即可得出∠DAC=∠DEC,∠ADC=90°,再根据直角三角形的性质即可得出结论; (2)由∠BDA=180°-∠ADC=90°,∠ABC=45°可求出∠BAD=45°,利用勾股定理即可得出DC的长,进而求出BC的长,由已知的一对角线段和公共角,根据两对对应角相等的两三角形相似可得三角形BCE与三角形EDC相似,由相似得比例即可求出CE的长. (1)证明:连接AD, ∵∠DAC=∠DEC,∠EBC=∠DEC, ∴∠DAC=∠EBC, ∵AC是⊙O的直径, ∴∠ADC=90°, ∴∠DCA+∠DAC=90°, ∴∠EBC+∠DCA=90°, ∴∠BGC=180°-(∠EBC+∠DCA)=180°-90°=90°, ∴AC⊥BH; (2)【解析】 ∵∠BDA=180°-∠ADC=90°,∠ABC=45°, ∴∠BAD=45°, ∴BD=AD, ∵BD=8,∴AD=8, 在直角三角形ADC中,AD=8,AC=10, 根据勾股定理得:DC=6,则BC=BD+DC=14, ∵∠EBC=∠DEC,∠BCE=∠ECD, ∴△BCE∽△ECD, ∴,即CE2=BC•CD=14×6=84, ∴CE==2.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,O为坐标原点.已知反比例函数y=manfen5.com 满分网(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为manfen5.com 满分网
(1)求k和m的值;
(2)点C(x,y)在反比例函数y=manfen5.com 满分网的图象上,求当1≤x≤3时函数值y的取值范围;
(3)过原点O的直线l与反比例函数y=manfen5.com 满分网的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值.

manfen5.com 满分网 查看答案
某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?
查看答案
在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;
(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.
查看答案
你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.
(1)在上下转动横板的过程中,两人上升的最大高度AA′,BB′有何数量关系?为什么?
(2)若立柱OC的高为0.5米,求上升最大高度AA′的值.

manfen5.com 满分网 查看答案
先化简,再求值,(manfen5.com 满分网+manfen5.com 满分网)÷manfen5.com 满分网,其中x=2.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.