(1)由于关于x的一元二次方程x2+(2k-3)x+k2=0有两个不相等的实数根α、β,那么其判别式应该是一个正数,由此即可求出k的取值范围;
(2)根据根与系数的关系可以得到α+β=-(2k-3),αβ=k2,而α+β+αβ=6,由此可以求出k的值,再把(α-β)2+3αβ-5变为(α+β)2-αβ-5,代入前面的值就可以求出结果.
【解析】
(1)∵方程x2+(2k-3)x+k2=0有两个不相等的实数根,
∴△>0即(2k-3)2-4×1×k2>0
解得k<;
(2)由根与系数的关系得:α+β=-(2k-3),αβ=k2.
∵α+β+αβ=6,
∴k2-2k+3-6=0
解得k=3或k=-1,
由(1)可知k=3不合题意,舍去.
∴k=-1,
∴α+β=5,αβ=1,
故(α-β)2+3αβ-5=(α+β)2-αβ-5=19.