满分5 > 初中数学试题 >

在修建某条公路的过程中,需挖通一条隧道,甲、乙两个工程队从隧道两端同时开始挖掘....

在修建某条公路的过程中,需挖通一条隧道,甲、乙两个工程队从隧道两端同时开始挖掘.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直至隧道挖通.图是甲、乙两个工程队所挖隧道的长度y(米)与挖掘时间x(天)之间的函数图象.请根据图象所提供的信息解答下列问题:
(1)求该隧道的长;
(2)乙工程队工作多少天时,两队所挖隧道的长度相差18米?

manfen5.com 满分网
(1)根据题目说明与上图可知,乙工程队所挖隧道OD满足正比例函数关系,故假设为y乙=kx(0≤x≤6);甲工程队由两段,一段OA满足正比例函数,另一段满足一次函数AC.且AC段经过A(2,180)、B两点,B为AC与OC的交点坐标,因而可通过OD段的正比例函数关系式求出B点坐标.由于D(6,432)点在OD段上,可求出正比例函数OD段的解析式,问题得解. (2)首先解得甲工程队的OA段的正比例函数关系式,再根据(1)中的甲、乙工程队所挖隧道的函数解析式,以及天数x的取值.分以下三种情况讨论:①当0≤x≤2时;②当2<x≤4时;③当4<x≤6时. 【解析】 (1)设y乙=kx(0≤x≤6),y甲=mx+n(2≤x≤8), ∵432=6k, ∴k=72, ∴y乙=72x(1分) 当x=4,y乙=72×4=288. ∵, 解得,即y甲=54x+72(1分) 当x=8时,y甲=504, ∴432+504=936, ∴该隧道的长为936米(1分); (2)设y甲=ax(0≤x≤2), ∵180=2a, ∴a=90,即y甲=90x(1分), ①当0≤x≤2时,y甲-y乙=18,90x-72x=18,x=1,(1分) ②当2<x≤4时,y甲-y乙=18,54x+72-72x=18,x=3,(1分) ③当4<x≤6时,y乙-y甲=18,72x-(54x+72)=18,x=5,(1分) 乙工程队工作1天或3天或5天时,两队所挖隧道的长度相差18米.(1分)
复制答案
考点分析:
相关试题推荐
要在宽为28m的海堤公路的路边安装路灯,路灯的灯臂长为3m,且与灯柱成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直.当灯罩的轴线通过公路路面的中线时,照明效果最理想.问:应设计多高的灯柱,才能取得最理想的照明效果(精确到0.01m,manfen5.com 满分网≈1.732).

manfen5.com 满分网 查看答案
王强与李刚两位同学在学习“概率”时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:
向上点数123456
出现次数69581610
(1)请计算出现向上点数为3的频率及出现向上点数为5的频率;
(2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大.”李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错;
(3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.
查看答案
三等分任意角是三大几何作图不能问题之一,古希腊数学家阿基米德就设计出了一个巧妙的三等分角的方法:在直尺边缘上添加一点P,命尺端为O(如图①);设所要三等分的角是∠MCN,以C为圆心,OP为半径作半圆交给定角的两边CM、CN于A、B两点;移动直尺,使直尺上的O点在AC的延长线上移动,P点在圆周上移动,当直尺正好通过B点时,连OPB,则有∠AOB=manfen5.com 满分网∠MCN.这种方法由于在直尺上作了一个记号,不符合尺规作图中直尺只能用来连线的规定,因此还不能算是严格意义上的尺规作图.
(1)动手实践操作,用以上方法三等分∠MCN,在图②中画出图形并标明相应字母;
(2)请你就阿基米德的作图方法给出证明.
manfen5.com 满分网
查看答案
方程组manfen5.com 满分网有唯一解,求m的值和方程组的解?
查看答案
已知x-1=manfen5.com 满分网,先化简代数式manfen5.com 满分网,再求这个代数式的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.