满分5 > 初中数学试题 >

某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种...

某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.
(1)求甲、乙两种花木每株成本分别为多少元?
(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21 600元,花农有哪几种具体的培育方案?
(1)设甲、乙两种花木的成本价分别为x元和y元. 此问中的等量关系:①甲种花木2株,乙种花木3株,共需成本1700元;②培育甲种花木3株,乙种花木1株,共需成本1500元. (2)结合(1)中求得的结果,根据题目中的不等关系:①成本不超过30000元;②总利润不少于21 600元.列不等式组进行分析. 【解析】 (1)设甲、乙两种花木的成本价分别为x元和y元. 由题意得:, 解得:. 答:甲、乙两种花木每株成本分别为400元、300元; (2)设种植甲种花木为a株,则种植乙种花木为(3a+10)株. 则有:, 解得:. 由于a为整数, ∴a可取18或19或20. 所以有三种具体方案: ①种植甲种花木18株,种植乙种花木3a+10=64株; ②种植甲种花木19株,种植乙种花木3a+10=67株; ③种植甲种花木20株,种植乙种花木3a+10=70株.
复制答案
考点分析:
相关试题推荐
已知:如图,AB是⊙O的直径,C是⊙O上的一点,且∠BCE=∠CAB,CE交AB的延长线于点E,AD⊥AB,交EC的延长线于点D.
(1)判断直线DE与⊙O的位置关系,并证明你的结论;
(2)若CE=3,BE=2,求CD的长.

manfen5.com 满分网 查看答案
某中学初三年级的同学参加了一项节能的社会调查活动,为了了解家庭用电的情况,他们随机调查了某地50个家庭一年中生活用电的电费支出情况,并绘制了如下不完整的频数分布表和频数分布直方图(费用取整数,单位:元).
分组/元频 数频 率
1000<x<120030.060
1200<x<1400120.240
1400<x<1600180.360
1600<x<18000.200
1800<x<20005
2000<x<220020.040
合计501.000
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭电费支出的中位数落在哪个组内?
(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?

manfen5.com 满分网 查看答案
已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.
求证:∠ADF=∠CBE.

manfen5.com 满分网 查看答案
计算:manfen5.com 满分网
查看答案
如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则CG=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.