满分5 > 初中数学试题 >

情境观察 将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1...

情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是______,∠CAC′=______°.manfen5.com 满分网
manfen5.com 满分网
问题探究manfen5.com 满分网
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
①观察图形即可发现△ABC≌△AC′D,即可解题; ②易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题; ③过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题. 【解析】 ①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB, ∴∠CAC′=180°-∠C′AD-∠CAB=90°; 故答案为:AD,90. ②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°, ∴∠AFQ=∠CAG,同理∠ACG=∠FAQ, 又∵AF=AC, ∴△AFQ≌△CAG, ∴FQ=AG, 同理EP=AG, ∴FQ=EP. ③HE=HF. 理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q. ∵四边形ABME是矩形, ∴∠BAE=90°, ∴∠BAG+∠EAP=90°, 又AG⊥BC, ∴∠BAG+∠ABG=90°, ∴∠ABG=∠EAP. ∵∠AGB=∠EPA=90°, ∴△ABG∽△EAP, ∴AG:EP=AB:EA. 同理△ACG∽△FAQ, ∴AG:FQ=AC:FA. ∵AB=k•AE,AC=k•AF, ∴AB:EA=AC:FA=k, ∴AG:EP=AG:FQ. ∴EP=FQ. 又∵∠EHP=∠FHQ,∠EPH=∠FQH, ∴Rt△EPH≌Rt△FQH(AAS). ∴HE=HF.
复制答案
考点分析:
相关试题推荐
周六上午8:O0小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x小时,小明离家的路程y(干米)与x(小时)之间的函数图象如图所示,
(1)小明去基地乘车的平均速度是______千米/小时,爸爸开车的平均速度应是______千米/小时;
(2)求线段CD所表示的函数关系式;
(3)问小明能否在12:0 0前回到家?若能,请说明理由;若不能,请算出12:00时他离家的路程.

manfen5.com 满分网 查看答案
如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
(1)求证:BC是⊙O的切线;
(2)连接AF,BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=manfen5.com 满分网,求⊙O的半径.

manfen5.com 满分网 查看答案
某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的manfen5.com 满分网倍,购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
查看答案
将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是______
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是______
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.

manfen5.com 满分网 查看答案
化简,求值:manfen5.com 满分网,其中m=manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.