满分5 > 初中数学试题 >

已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点...

已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.
(1)求证:△BCE≌△DCF;
(2)OG与BF有什么数量关系?证明你的结论;
(3)若GE•GB=4-2manfen5.com 满分网,求正方形ABCD的面积.

manfen5.com 满分网
(1)根据全等三角形的判定方法寻找条件. (2)因为O是BD的中点,结合已知条件,知道证明G是DF中点即可. (3)要求正方形的面积,求出边长的平方即可,为此要找到一个关于边长的方程,因为已知中有直角,根据勾股定理,结合已知条件,列出方程,求出答案. (1)证明:在△BCE与△DCF中, ∵, ∴△BCE≌△DCF. (2)【解析】 OG=BF. 理由如下:∵△BCE≌△DCF, ∴∠CEB=∠F, ∵∠CEB=∠DEG, ∴∠F=∠DEG, ∵∠F+∠GDE=90°, ∴∠DEG+∠GDE=90°, ∴BG⊥DF, ∴∠BGD=∠BGF, 又∵BG=BG,∠DBG=∠FBG, ∴△BGD≌△BGF, ∴DG=GF, ∵O为正方形ABCD的中心, ∴DO=OB, ∴OG是△DBF的中位线, ∴OG=BF. (3)【解析】 设BC=x,则DC=x,BD=, 由(2)知,△BGF≌△BGD, ∴BF=BD, ∴CF=(-1)x, ∵∠DGB=∠EGD,∠DBG=∠EDG, ∴△GDB∽△GED, ∴=, ∴GD2=GE•GB=4-2, ∵DC2+CF2=(2GD)2, ∴x2+(-1)2x2=4(4-2), (4-2)x2=4(4-2), x2=4, 正方形ABCD的面积是4个平方单位.
复制答案
考点分析:
相关试题推荐
甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表)
甲超市:
两红一红一白两白
礼金券(元)5105
乙超市:
两红一红一白两白
礼金券(元)10510
(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.
查看答案
如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
已知关于x的方程k2x2-2(k+1)x+1=0有两个实数根.
(1)求k的取值范围;
(2)当k=1时,设所给方程的两个根分别为x1和x2,求manfen5.com 满分网+manfen5.com 满分网的值.
查看答案
张军同学9点50分离开家去赶11点整的火车,已知他家离火车站10千米,到火车站后,进站、检票等事项共需20分钟,他离开家后以3千米/小时的速度走了1千米,然后乘公共汽车去火车站,问公共汽车平均每小时至少行驶多少千米才能不误当次火车?
查看答案
已知:如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).
(1)求该反比例函数的解析式;
(2)求直线BC的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.