满分5 > 初中数学试题 >

如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(...

如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)

manfen5.com 满分网
连接AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F,则OF⊥AB,先根据垂径定理求出AF的值,再在Rt△AOF中利用锐角三角函数的定义求出∠AOB的度数,由勾股定理求出OF的长,根据四边形ABCD是等腰梯形求出AE的长,再由S阴=S梯形ABCD-(S扇OAB-S△OAB)即可得出结论. 【解析】 如图,连接AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F.则OF⊥AB. ∵OA=OB=5m,AB=8m,OM是半径,OM⊥AB, ∴AF=BF=AB=4(m),∠AOB=2∠AOF, 在Rt△AOF中,sin∠AOF==0.8=sin53°, ∴∠AOF=53°,则∠AOB=106°, ∵OF==3(m),由题意得:MN=1m, ∴FN=OM-OF+MN=3(m), ∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB, ∴AE=FN=3m,DC=AB+2DE. 在Rt△ADE中,tan56°==, ∴DE=2m,DC=12m. ∴S阴=S梯形ABCD-(S扇OAB-S△OAB)=(8+12)×3-(π×52-×8×3)≈20(m2). 答:U型槽的横截面积约为20m2.
复制答案
考点分析:
相关试题推荐
某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:
manfen5.com 满分网
(1)该校学生报名总人数有多少人?
(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?
(3)频数分布直方图补充完整.
查看答案
将两个全等的直角三角形ABC和DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图2中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.

manfen5.com 满分网 查看答案
(1)计算:manfen5.com 满分网
(2)先化简再求值.已知manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
对于任何实数,我们规定符号manfen5.com 满分网的意义是manfen5.com 满分网=ad-bc.例如:manfen5.com 满分网=1×4-2×3=-2,manfen5.com 满分网=(-2)×5-4×3=-22.按照这个规定,当x2-4x+4=0时,manfen5.com 满分网的值是    查看答案
在一个暗盒中放有若干个红色球和3个黑色球(这些球除颜色外,无其他区别),从中随即取出1个球是红球的概率是manfen5.com 满分网.若在暗盒中增加1个黑球,则从中随即取出一个球是红球的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.