满分5 > 初中数学试题 >

如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x轴相交于点B...

如图,已知抛物线的方程C1:y=-manfen5.com 满分网(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

manfen5.com 满分网
(1)将点(2,2)的坐标代入抛物线解析式,即可求得m的值; (2)求出B、C、E点的坐标,进而求得△BCE的面积; (3)根据轴对称以及两点之间线段最短的性质,可知点B、C关于对称轴x=1对称,连接EC与对称轴的交点即为所求的H点,如答图1所示; (4)本问需分两种情况进行讨论: ①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2; ②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾的等式,故此种情形不存在. 【解析】 (1)依题意,将M(2,2)代入抛物线解析式得: 2=-(2+2)(2-m),解得m=4. (2)令y=0,即(x+2)(x-4)=0,解得x1=-2,x2=4, ∴B(-2,0),C(4,0) 在C1中,令x=0,得y=2, ∴E(0,2). ∴S△BCE=BC•OE=6. (3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称. 如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度). 设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2, 当x=1时,y=,∴H(1,). (4)分两种情形讨论: ①当△BEC∽△BCF时,如解答图2所示. 则, ∴BC2=BE•BF. 由函数解析式可得:B(-2,0),E(0,2),即OB=OE,∴∠EBC=45°, ∴∠CBF=45°, 作FT⊥x轴于点T,则∠BFT=∠TBF=45°, ∴BT=TF. ∴可令F(x,-x-2)(x>0),又点F在抛物线上, ∴-x-2=-(x+2)(x-m), ∵x+2>0, ∵x>0, ∴x=2m,F(2m,-2m-2). 此时BF==2(m+1),BE=,BC=m+2, 又∵BC2=BE•BF, ∴(m+2)2=•(m+1), ∴m=2±, ∵m>0, ∴m=+2. ②当△BEC∽△FCB时,如解答图3所示. 则, ∴BC2=EC•BF. ∵△BEC∽△FCB ∴∠CBF=∠ECO, ∵∠EOC=∠FTB=90°, ∴△BTF∽△COE, ∴, ∴可令F(x,(x+2))(x>0) 又∵点F在抛物线上, ∴(x+2)=-(x+2)(x-m), ∵x+2>0(x>0), ∴x=m+2, ∴F(m+2,(m+4)),EC=,BC=m+2, 又BC2=EC•BF, ∴(m+2)2=• 整理得:0=16,显然不成立. 综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.
复制答案
考点分析:
相关试题推荐
某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:
空调机电冰箱
甲连锁店200170
乙连锁店160150
设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).
(1)求y关于x的函数关系式,并求出x的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?
查看答案
已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2
①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.
查看答案
如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)

manfen5.com 满分网 查看答案
某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:
manfen5.com 满分网
(1)该校学生报名总人数有多少人?
(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?
(3)频数分布直方图补充完整.
查看答案
将两个全等的直角三角形ABC和DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图2中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.