满分5 > 初中数学试题 >

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3...

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知了抛物线图象上的三点坐标,可用待定系数法求出该抛物线的解析式,进而可用配方法或公式法求得顶点D的坐标. (2)根据B、C、D的坐标,可求得△BCD三边的长,然后判断这三条边的长是否符合勾股定理即可. (3)假设存在符合条件的P点;首先连接AC,根据A、C的坐标及(2)题所得△BDC三边的比例关系,即可判断出点O符合P点的要求,因此以P、A、C为顶点的三角形也必与△COA相似,那么分别过A、C作线段AC的垂线,这两条垂线与坐标轴的交点也符合点P点要求,可根据相似三角形的性质(或射影定理)求得OP的长,也就得到了点P的坐标. 【解析】 (1)设该抛物线的解析式为y=ax2+bx+c, 由抛物线与y轴交于点C(0,-3),可知c=-3, 即抛物线的解析式为y=ax2+bx-3, 把A(-1,0)、B(3,0)代入, 得 解得a=1,b=-2. ∴抛物线的解析式为y=x2-2x-3, ∴顶点D的坐标为(1,-4). (2)以B、C、D为顶点的三角形是直角三角形, 理由如下: 过点D分别作x轴、y轴的垂线,垂足分别为E、F. 在Rt△BOC中,OB=3,OC=3, ∴BC2=18, 在Rt△CDF中,DF=1,CF=OF-OC=4-3=1, ∴CD2=2, 在Rt△BDE中,DE=4,BE=OB-OE=3-1=2, ∴BD2=20, ∴BC2+CD2=BD2,故△BCD为直角三角形. (3)连接AC,则容易得出△COA∽△PCA,又△PCA∽△BCD,可知Rt△COA∽Rt△BCD,得符合条件的点为O(0,0). 过A作AP1⊥AC交y轴正半轴于P1,可知Rt△CAP1∽Rt△COA∽Rt△BCD, 求得符合条件的点为. 过C作CP2⊥AC交x轴正半轴于P2,可知Rt△P2CA∽Rt△COA∽Rt△BCD, 求得符合条件的点为P2(9,0). ∴符合条件的点有三个:O(0,0),,P2(9,0).
复制答案
考点分析:
相关试题推荐
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.

manfen5.com 满分网 查看答案
如图所示是一个家用温度表的表盘、其左边为摄氏温度的刻度和读数(单位℃),右边为华氏温度的刻度和读数(单位℉).左边的摄氏温度每格表示1℃,而右边的华氏温度每格表示2℉.已知表示-40℃与-40℉的刻度线恰好对齐(在一条水平线上),而表示50℃与122℉的刻度线恰好对齐.
(1)若摄氏温度为x℃时,华氏温度表示为y℉,求y与x的一次函数关系式;
(2)当摄氏温度为0℃时,温度表上华氏温度一侧是否有刻度线与0℃的刻度线对齐?若有,是多少华氏度?

manfen5.com 满分网 查看答案
如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,求灯塔P到滨海路的距离.(结果保留根号)

manfen5.com 满分网 查看答案
如图,∠BAC=∠ABD.
(1)要使OC=OD,可以添加的条件为:____________;(写出2个符合题意的条件即可)
(2)请选择(1)中你所添加的一个条件,证明OC=OD.

manfen5.com 满分网 查看答案
某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.
manfen5.com 满分网
根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.