如图,已知直线y=x+8交x轴于A点,交y轴于B点,过A、0两点的抛物线y=ax
2+bx(a<O)的顶点C在直线AB上,以C为圆心,CA的长为半径作⊙C.
(1)求抛物线的对称轴、顶点坐标及解析式;
(2)将⊙C沿x轴翻折后,得到⊙C′,求证:直线AC是⊙C′的切线;
(3)若M点是⊙C的优弧
(不与0、A重合)上的一个动点,P是抛物线上的点,且∠POA=∠AM0,求满足条件的P点的坐标.
考点分析:
相关试题推荐
我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:
①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;
②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;
③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
湘 莲 品 种 | A | B | C |
每辆汽车运载量(吨) | 12 | 10 | 8 |
每吨湘莲获利(万元) | 3 | 4 | 2 |
查看答案
如图,在海岸边有一港口O,已知小岛A在港口O北偏东30°的方向上,小岛B在小岛A的正南方向,OA=60海里,OB=20
海里.
(1)求O到直线AB的距离;
(2)小岛B在港口O的什么方向上?
查看答案
小明练习100米短跑,训练时间与100米短跑成绩记录如下:
时间(月) | 1 | 2 | 3 | 4 |
成绩(秒) | 15.6 | 15.4 | 15.2 | 15 |
(1)请你为小明的100米短跑成绩y(秒)与训练时间x(月)的关系建立函数模型;
(2)用所求出的函数解析式预测小明训练6个月的100米短跑成绩;
(3)能用所求出的函数解析式预测小明训练3年的100米短跑成绩吗?为什么?
查看答案
小明看到路边有人设摊玩“有奖投币”游戏,规则是:交2元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果是出现两枚硬币正面朝上,则有奖金5元,如果是其他情况则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况),小明拿不定主意究竟是玩还是不玩,请同学们帮忙!
(1)请列出所有掷硬币的结果,求中奖的机会;
(2)若有100人,每人玩一次这种游戏,则大约有______人中奖,奖金共约______元,设摊者约获利______元.
查看答案
如图,在Rt△ABC中,∠C=90°,∠A=60°,点E,F分别在AB,AC上,把∠A沿着EF对折,使点A落在BC上点D处,且使ED⊥BC.
(1)猜测AE与BE的数量关系,并说明理由;
(2)求证:四边形AEDF是菱形.
查看答案