满分5 > 初中数学试题 >

如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA...

如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.
(1)AB与⊙O相切吗,为什么?
(2)若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.

manfen5.com 满分网
(1)根据等腰三角形的性质由OA=OB,C是边AB的中点得到OC⊥AB,然后根据切线的判定方法即可得到AB与⊙O相切; (2)根据等腰三角形的性质得∠AOC=∠BOC,再利用“SAS”可判断△EOC≌△FOC,则CE=CF,∠ECO=∠FCO,于是∠AOB=2∠EOC,∠ECF=2∠ECO,而∠AOB=∠ECF,所以∠EOC=∠ECO,则CE=OE,得到CE=OE=OF=CF,然后利用菱形的判定方法得到四边形OECF为菱形. 【解析】 (1)AB与⊙O相切.理由如下: 连结OC, ∵OA=OB,C是边AB的中点, ∴OC⊥AB, 而OC为⊙O的半径, ∴AB与⊙O相切于C; (2)四边形OECF为菱形.理由如下: ∵OA=OB,C是边AB的中点, ∴∠AOC=∠BOC, ∵在△EOC和△FOC中, , ∴△EOC≌△FOC(SAS), ∴CE=CF,∠ECO=∠FCO, ∵∠AOC=∠BOC,∠ECO=∠FCO, ∴∠AOB=2∠EOC,∠ECF=2∠ECO, 又∵∠AOB=∠ECF, ∴∠EOC=∠ECO, ∴CE=OE, ∴CE=OE=OF=CF, ∴四边形OECF为菱形.
复制答案
考点分析:
相关试题推荐
甲乙两地相距400km,一辆轿车从甲地出发,以80km/h的速度匀速驶往乙地.0.5h后,一辆货车从乙地出发匀速驶往甲地.货车出发2.5h后与轿车在途中相遇.此后,两车继续行驶,并各自到达目的地.设轿车行驶的时间为x(h),两车距乙地的距离为y(km).
manfen5.com 满分网
(1)两车距乙地的距离与x之间的函数关系,在同一坐标系中画出的图象是______
(2)求货车距乙地的距离y1与x之间的函数关系式.
(3)在甲乙两地间,距乙地300km处有一个加油站,两车在行驶过程中都曾在该加油站加油(加油时间忽略不计).求两车加油的间隔时间是多少?
查看答案
随着青奥会的临近,青奥特许商品销售逐渐火爆.甲、乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍,求甲店、乙店这两个月的月平均增长率各是多少?
查看答案
在一个不透明的盒子中,有三张除颜色外都相同的卡片,一张两面都是红色,一张两面都是黑色,另一张一面是红色,一面是黑色.
(1)从盒中任意抽出一张卡片,求至少有一面是红色的概率;
(2)小明和小颖玩抽卡片的游戏,规则如下:从盒中任意抽出一张卡片,放在桌子上,一面朝上,猜另一面的颜色.如果另一面的颜色与朝上一面的颜色相同,则小颖胜,反之,则小明胜.游戏共玩了5次,其中小明胜2次.因此,小明认为:在这个游戏中,自己获胜的概率一定是manfen5.com 满分网,小颖获胜的概率一定是manfen5.com 满分网.而小颖则认为:假设抽出的卡片朝上一面是红色,则这张一定不可能是两面黑色的卡片,它或者是两面红,或者是两面不同,相同与不同机会各占一半,所以自己和小明获胜的概率都是manfen5.com 满分网.请分别评述小明与小颖的观点是否正确,并判断这个游戏公平吗?简要说明理由.
查看答案
(1)求二次函数y=x2-4x+1图象的顶点坐标,并指出当x在何范围内取值时,y随x的增大而减小;
(2)若二次函数y=x2-4x+c的图象与坐标轴有2个交点,求字母c应满足的条件.
查看答案
如图,一台起重机,他的机身高AC为21m,吊杆AB长为36m,吊杆与水平线的夹角∠BAD可从30°升到80°.求这台起重机工作时,吊杆端点B离地面CE的最大高度和离机身AC的最大水平距离(结果精确到0.1m)(参考数据:sin80°≈0.98,cos80°≈0.17,tan33°≈5.67).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.