满分5 > 初中数学试题 >

如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=...

如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO
(1)求证:PC是⊙O的切线.
(2)若OE:EA=1:2,PA=6,求⊙O的半径.
(3)在(2)的条件下,求sin∠PCA的值.

manfen5.com 满分网
(1)连接OC,根据PC2=PE•PO和∠P=∠P,可证明△PCO∽△PEC,则∠PCO=∠PEC,再由已知条件即可得出PC⊥OC; (2)设OE=x,则AE=2x,根据切割线定理得PC2=PA•PB,则PA•PB=PE•PO,解一元二次方程即可求出x,从而得出⊙O的半径; (3)连接BC,根据PC是⊙O的切线,得∠PCA=∠B,根据勾股定理可得出CE,BC,由三角函数的定义可得出答案. (1)证明:连接OC, ∵PC2=PE•PO, ∴=, ∵∠P=∠P, ∴△PCO∽△PEC, ∴∠PCO=∠PEC, ∵CD⊥AB, ∴∠PEC=90°, ∴∠PCO=90°, ∴PC是⊙O的切线. (2)【解析】 设OE=x, ∵OE:EA=1:2, ∴AE=2x, ∵PC2=PA•PB, ∴PA•PB=PE•PO, ∵PA=6, ∴(6+2x)(6+3x)=6(6+6x), 解得,x=1, ∴OA=3x=3, ∴⊙O的半径为3. (3)【解析】 连接BC, ∵PC2=PA•PB, ∴PC=6, ∴CE===2, ∴BC===2, ∵PC是⊙O的切线, ∴∠PCA=∠B, ∴sin∠PCA=sin∠B===.
复制答案
考点分析:
相关试题推荐
小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
manfen5.com 满分网
(1)观察图象,直接写出日销售量的最大值;
(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?
查看答案
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=manfen5.com 满分网(x>0)的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).

manfen5.com 满分网 查看答案
如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)证明:∠BAE=∠FEC;
(2)求△AEF的面积.

manfen5.com 满分网 查看答案
如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.
(1)求垂直支架CD的长度;(结果保留根号)
(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.73)
manfen5.com 满分网
查看答案
西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.