满分5 > 初中数学试题 >

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C. (1)求...

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

manfen5.com 满分网
(1)抛物线与x轴的交点,即当y=0,C点坐标即当x=0,分别令y以及x为0求出A,B,C坐标的值; (2)四边形ACBP的面积=△ABC+△ABP,由A,B,C三点的坐标,可知△ABC是直角三角形,且AC=BC,则可求出△ABC的面积,根据已知可求出P点坐标,可知AP的长度,以及点B到直线的距离,从而求出△ABP的面积,则就求出四边形ACBP的面积; (3)假设存在这样的点M,两个三角形相似,根据题意以及上两题可知,∠PAC∠和∠MGA是直角,只需证明或即可.设M点坐标,根据题中所给条件可求出线段AG,CA,MG,CA的长度,然后列等式,分情况讨论,求解. 【解析】 (1)令y=0, 得x2-1=0 解得x=±1, 令x=0,得y=-1 ∴A(-1,0),B(1,0),C(0,-1);(2分) (2)∵OA=OB=OC=1, ∴∠BAC=∠ACO=∠BCO=45°. ∵AP∥CB, ∴∠PAB=45°. 过点P作PE⊥x轴于E,则△APE为等腰直角三角形, 令OE=a,则PE=a+1, ∴P(a,a+1). ∵点P在抛物线y=x2-1上, ∴a+1=a2-1. 解得a1=2,a2=-1(不合题意,舍去). ∴PE=3(4分). ∴四边形ACBP的面积S=AB•OC+AB•PE =×2×1+×2×3=4;(6分) (3)假设存在 ∵∠PAB=∠BAC=45°, ∴PA⊥AC ∵MG⊥x轴于点G, ∴∠MGA=∠PAC=90° 在Rt△AOC中,OA=OC=1, ∴AC= 在Rt△PAE中,AE=PE=3, ∴AP=3(7分) 设M点的横坐标为m,则M(m,m2-1) ①点M在y轴左侧时,则m<-1. (ⅰ)当△AMG∽△PCA时,有. ∵AG=-m-1,MG=m2-1. 即 解得m1=-1(舍去)m2=(舍去). (ⅱ)当△MAG∽△PCA时有, 即. 解得:m=-1(舍去)m2=-2. ∴M(-2,3)(10分). ②点M在y轴右侧时,则m>1 (ⅰ)当△AMG∽△PCA时有 ∵AG=m+1,MG=m2-1 ∴ 解得m1=-1(舍去)m2=. ∴M(,). (ⅱ)当△MAG∽△PCA时有, 即. 解得:m1=-1(舍去)m2=4, ∴M(4,15). ∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似 M点的坐标为(-2,3),(,),(4,15).(13分)
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO
(1)求证:PC是⊙O的切线.
(2)若OE:EA=1:2,PA=6,求⊙O的半径.
(3)在(2)的条件下,求sin∠PCA的值.

manfen5.com 满分网 查看答案
小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
manfen5.com 满分网
(1)观察图象,直接写出日销售量的最大值;
(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?
查看答案
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=manfen5.com 满分网(x>0)的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).

manfen5.com 满分网 查看答案
如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)证明:∠BAE=∠FEC;
(2)求△AEF的面积.

manfen5.com 满分网 查看答案
如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.
(1)求垂直支架CD的长度;(结果保留根号)
(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.73)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.