由抛物线开口向下得到a>0,由抛物线与y轴的交点在x轴下方得c<0,则ac<0;
由于抛物线与x轴两交点坐标为(-1,0)、(3,0),根据抛物线的对称性得到抛物线的对称轴为直线x=-=1,所以2a+b=0;
由于x=1时,y<0,则a+b+c<0;
由于抛物线的对称轴为直线x=1,根据二次函数的性质得当x=1时,y的最小值为a+b+c,所以ax2+bx+c≥a+b+c,即ax2+bx≥a+b.
【解析】
A、∵抛物线开口向下,∴a>0;∵抛物线与y轴的交点在x轴下方,∴c<0,所以ac<0,所以A选项的说法正确;
B、∵抛物线与x轴两交点坐标为(-1,0)、(3,0),∴抛物线的对称轴为直线x=-=1,所以2a+b=0,所以B选项的说法正确;
C、∵x=1时,y<0,∴a+b+c<0,所以C选项的说法错误;
D、∵抛物线的对称轴为直线x=1,∴当x=1时,y的最小值为a+b+c,∴对于任意x均有ax2+bx+c≥a+b+c,即ax2+bx≥a+b,所以D选项的说法正确.
故选C.