满分5 > 初中数学试题 >

如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F...

如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.

manfen5.com 满分网
(1)首先利用SSS定理证明△ABC≌△ADC可得∠BAC=∠DAC,再证明△ABF≌△ADF,可得∠AFD=∠AFB,进而得到∠AFD=∠CFE; (2)首先证明∠CAD=∠ACD,再根据等角对等边可得AD=CD,再有条件AB=AD,CB=CD可得AB=CB=CD=AD,可得四边形ABCD是菱形; (3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD. (1)证明:∵在△ABC和△ADC中, ∴△ABC≌△ADC(SSS), ∴∠BAC=∠DAC, ∵在△ABF和△ADF中, ∴△ABF≌△ADF, ∴∠AFD=∠AFB, ∵∠AFB=∠CFE, ∴∠AFD=∠CFE; (2)证明:∵AB∥CD, ∴∠BAC=∠ACD, 又∵∠BAC=∠DAC, ∴∠CAD=∠ACD, ∴AD=CD, ∵AB=AD,CB=CD, ∴AB=CB=CD=AD, ∴四边形ABCD是菱形; (3)当EB⊥CD时,∠EFD=∠BCD, 理由:∵四边形ABCD为菱形, ∴BC=CD,∠BCF=∠DCF, 在△BCF和△DCF中, ∴△BCF≌△DCF(SAS), ∴∠CBF=∠CDF, ∵BE⊥CD, ∴∠BEC=∠DEF=90°, ∴∠EFD=∠BCD.
复制答案
考点分析:
相关试题推荐
某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?
查看答案
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=AB•AD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数y=manfen5.com 满分网的图象经过点C,一次函数y=ax+b的图象经过点C,一次函数y=ax+b的图象经过点A,
(1)求反比例函数与一次函数的解析式;
(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

manfen5.com 满分网 查看答案
如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为    (取manfen5.com 满分网,结果精确到0.1海里).
manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.