满分5 > 初中数学试题 >

如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、...

如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.已知BD=2,AD=3.
求:(1)tanC;
(2)图中两部分阴影面积的和.

manfen5.com 满分网
(1)连接OE,得到∠ADO=∠AEO=90°,根据∠A=90°,推出矩形ADOE,进一步推出正方形ADOE,得出OD∥AC,OD=AD=3,∠BOD=∠C,即可求出答案; (2)设⊙O与BC交于M、N两点,由(1)得:四边形ADOE是正方形,推出∠COE+∠BOD=90°,根据,OE=3,求出,根据S扇形DOM+S扇形EON=S扇形DOE,即可求出阴影部分的面积. 【解析】 (1)连接OE, ∵AB、AC分别切⊙O于D、E两点, ∴AD⊥OD,AE⊥OE, ∴∠ADO=∠AEO=90°, 又∵∠A=90°, ∴四边形ADOE是矩形, ∵OD=OE, ∴四边形ADOE是正方形, ∴OD∥AC,OD=AD=3, ∴∠BOD=∠C, ∴在Rt△BOD中,, ∴. 答:tanC=. (2)如图,设⊙O与BC交于M、N两点, 由(1)得:四边形ADOE是正方形, ∴∠DOE=90°, ∴∠COE+∠BOD=90°, ∵在Rt△EOC中,=,OE=3, ∴, ∴S扇形DOM+S扇形EON=S扇形DOE=, ∴S阴影=S△BOD+S△COE-(S扇形DOM+S扇形EON)=, 答:图中两部分阴影面积的和为.
复制答案
考点分析:
相关试题推荐
病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.
(1)求当0≤x≤2时,y与x的函数关系式;
(2)求当x>2时,y与x的函数关系式;
(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?

manfen5.com 满分网 查看答案
我县“果菜大王”王大炮收货番茄20吨,青椒12吨.现计划租用甲、乙两种货车共8辆将这批果菜全部运往外地销售,已知一辆甲种货车可装番茄4吨和青椒1吨,一辆乙种货车可装番茄和青椒各2吨.
(1)王灿有几种方案安排甲、乙两种货车可一次性地将果菜运到销售地?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王大炮应选择哪种方案,使运输费最少?最少运费是多少?
查看答案
2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦.也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸从中摸出一个球,如果摸出的是红球.妹妹去听讲座,如果摸出的是白球,小明去听讲座.
(1)爸爸说这个办法不公平,请你用概率的知识解释原因.
(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,问摸球的结果是对小明有利还是对妹妹有利.说明理由.
查看答案
已知:平行四边形ABCD中,E、F是BC、AB的中点,DE、DF分别交AB、CB的延长线于H、G;
(1)求证:BH=AB;
(2)若四边形ABCD为菱形,试判断∠G与∠H的大小,并证明你的结论.

manfen5.com 满分网 查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.