满分5 > 初中数学试题 >

如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两...

如图,一次函数manfen5.com 满分网分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
manfen5.com 满分网
(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式; (2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值; (3)本问要点是明确D点的可能位置有三种情形,如答图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标. 【解析】 (1)∵分别交y轴、x轴于A、B两点, ∴A、B点的坐标为:A(0,2),B(4,0)…(1分) 将x=0,y=2代入y=-x2+bx+c得c=2…(2分) 将x=4,y=0代入y=-x2+bx+c得0=-16+4b+2,解得b=, ∴抛物线解析式为:y=-x2+x+2…(3分) (2)如答图1,设MN交x轴于点E, 则E(t,0),BE=4-t. ∵tan∠ABO===, ∴ME=BE•tan∠ABO=(4-t)×=2-t. 又N点在抛物线上,且xN=t,∴yN=-t2+t+2, ∴MN=yN-ME=-t2+t+2-(2-t)=-t2+4t…(5分) ∴当t=2时,MN有最大值4…(6分) (3)由(2)可知,A(0,2),M(2,1),N(2,5). 以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.…(7分) (i)当D在y轴上时,设D的坐标为(0,a) 由AD=MN,得|a-2|=4,解得a1=6,a2=-2, 从而D为(0,6)或D(0,-2)…(8分) (ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点, 易得D1N的方程为y=x+6,D2M的方程为y=x-2, 由两方程联立解得D为(4,4)…(9分) 故所求的D点坐标为(0,6),(0,-2)或(4,4)…(10分)
复制答案
考点分析:
相关试题推荐
如图,在等腰三角形ABC中,AB=AC,以AC为直径作圆O,与BC交于点E,过点E作ED⊥AB,垂足为点D,
(1)求证:DE为⊙O的切线;
(2)过O点作EC的垂线,垂足为H,求证:EH•BE=BD•CO.

manfen5.com 满分网 查看答案
如图,A、B两点在函数y=manfen5.com 满分网(x>0)的图象上.
(1)求m的值及直线AB的解析式;
(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.

manfen5.com 满分网 查看答案
为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.
查看答案
如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.

manfen5.com 满分网 查看答案
为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4各不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.
(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.
(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.