满分5 > 初中数学试题 >

如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO. (1...

manfen5.com 满分网如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=manfen5.com 满分网,求△ACF的面积.
(1)利用斜边上的中线等于斜边的一半,可判断△DOB是直角三角形,则∠OBD=90°,BD是⊙O的切线; (2)同弧所对的圆周角相等,可证明△ACF∽△BEF,得出一相似比,再利用三角形的面积比等于相似比的平方即可求解. (1)证明:连接BO,(1分) 方法一:∵AB=AD ∴∠D=∠ABD ∵AB=AO ∴∠ABO=∠AOB(2分) 又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180° ∴∠OBD=90°,即BD⊥BO ∴BD是⊙O的切线;(3分) 方法二:∵AB=AO,BO=AO ∴AB=AO=BO ∴△ABO为等边三角形 ∴∠BAO=∠ABO=60° ∵AB=AD ∴∠D=∠ABD 又∠D+∠ABD=∠BAO=60° ∴∠ABD=30°(2分) ∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO ∴BD是⊙O的切线; 方法三:∵AB=AD=AO ∴点O、B、D在以OD为直径的⊙A上 ∴∠OBD=90°,即BD⊥BO ∴BD是⊙O的切线; (2)【解析】 ∵∠C=∠E,∠CAF=∠EBF ∴△ACF∽△BEF ∵AC是⊙O的直径 ∴∠ABC=90° 在Rt△BFA中,cos∠BFA= ∴ 又∵S△BEF=8 ∴S△ACF=18.
复制答案
考点分析:
相关试题推荐
已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2-bx+kc(c≠0)的图象与x轴一个交点的横坐标为1.
(1)若方程①的根为正整数,求整数k的值;
(2)求代数式manfen5.com 满分网的值.
查看答案
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
manfen5.com 满分网
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
查看答案
如图示,▱ABCD内一点E满足ED⊥AD于D,且∠EBC=∠EDC,∠ECB=45°.找出图中一条与EB相等的线段,并加以证明.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x满足x2-2x-3=0.
查看答案
manfen5.com 满分网如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx-2的解集是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.