满分5 > 初中数学试题 >

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点...

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.
(1)求证:DF垂直平分AC;
(2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半径.

manfen5.com 满分网
(1)由DE是⊙O的切线,且DF过圆心O,可得DF⊥DE,又由AC∥DE,则DF⊥AC,进而可知DF垂直平分AC; (2)可先证△AGD≌△CGF,四边形ACED是平行四边形,即可证明FC=CE; (3)连接AO可先求得AG=4cm,在Rt△AGD中,由勾股定理得GD=3cm;设圆的半径为r,则AO=r,OG=r-3,在Rt△AOG中,由勾股定理可求得r=. (1)证明:∵DE是⊙O的切线,且DF过圆心O, ∴DF是⊙O的直径所在的直线, ∴DF⊥DE, 又∵AC∥DE, ∴DF⊥AC, ∴G为AC的中点,即DF平分AC,则DF垂直平分AC;(2分) (2)证明:由(1)知:AG=GC, 又∵AD∥BC, ∴∠DAG=∠FCG; 又∵∠AGD=∠CGF, ∴△AGD≌△CGF(ASA),(4分) ∴AD=FC; ∵AD∥BC且AC∥DE, ∴四边形ACED是平行四边形, ∴AD=CE, ∴FC=CE;(5分) (3)【解析】 连接AO, ∵AG=GC,AC=8cm, ∴AG=4cm; 在Rt△AGD中,由勾股定理得GD2=AD2-AG2=52-42=9, ∴GD=3;(6分) 设圆的半径为r,则AO=r,OG=r-3, 在Rt△AOG中,由勾股定理得AO2=OG2+AG2, 有:r2=(r-3)2+42, 解得r=,(8分) ∴⊙O的半径为cm.
复制答案
考点分析:
相关试题推荐
小明、小亮两人用如图所示的两个分隔均匀的转盘做游戏:分别转动两个转盘,转盘停止后,将两个指针所指数字相加(若指针恰好停在分割线上,则重转一次).如果这两个数字之和小于8(不包括8),则小明获胜;否则小亮获胜.
(1)填空:转动转盘B,转盘停止后,指针指向偶数的概率为______
(2)用列表法(或树状图)分别求出两人获胜的概率.
(3)这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使该游戏对双方公平?

manfen5.com 满分网 查看答案
已知,如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,且BE=DF
(1)求证:CE=CF;
(2)求∠CEF的度数.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网=k,求k的值.
查看答案
解不等式组,并把解集在数轴上表示出来:manfen5.com 满分网
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.