满分5 > 初中数学试题 >

如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为上一点,连结...

如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为manfen5.com 满分网上一点,连结AE,BE,BE交AC于点F,且AE2=EF•EB.
(1)求证:CB=CF;
(2)若点E到弦AD的距离为1,cos∠C=manfen5.com 满分网,求⊙O的半径.

manfen5.com 满分网
(1)如图1,通过相似三角形(△AEF∽△AEB)的对应角相等推知,∠1=∠EAB;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论; (2)如图2,连接OE交AC于点G,设⊙O的半径是r.根据(1)中的相似三角形的性质证得∠4=∠5,所以由“圆周角、弧、弦间的关系”推知点E是弧AD的中点,则OE⊥AD;然后通过解直角△ABC求得cos∠C=sin∠GAO==,则以求r的值. (1)证明:如图1, ∵AE2=EF•EB, ∴=. 又∠AEF=∠AEB, ∴△AEF∽△AEB, ∴∠1=∠EAB. ∵∠1=∠2,∠3=∠EAB, ∴∠2=∠3, ∴CB=CF; (2)【解析】 如图2,连接OE交AC于点G,设⊙O的半径是r. 由(1)知,△AEF∽△AEB,则∠4=∠5. ∴=. ∴OE⊥AD, ∴EG=1. ∵cos∠C=,且∠C+∠GAO=90°, ∴sin∠GAO=, ∴=,即=, 解得,r=,即⊙O的半径是.
复制答案
考点分析:
相关试题推荐
烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
查看答案
今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比manfen5.com 满分网较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
对雾霾了解程度的统计表:
对雾霾的了解程度百分比
A.非常了解5%
B.比较了解m
C.基本了解45%
D.不了解n
请结合统计图表,回答下列问题.
(1)本次参与调查的学生共有______人,m=______,n=______
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是______度;
(3)请补全图1示数的条形统计图;
(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
查看答案
manfen5.com 满分网如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=-manfen5.com 满分网x+3交AB,BC分别于点M,N,反比例函数y=manfen5.com 满分网的图象经过点M,N.
(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
查看答案
manfen5.com 满分网如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于A北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73,manfen5.com 满分网≈2.45,结果精确到0.1)
查看答案
先化简,再求值:manfen5.com 满分网,其中x满足x2+x-2=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.