满分5 > 初中数学试题 >

如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB...

如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=manfen5.com 满分网,AK=2manfen5.com 满分网,求FG的长.

manfen5.com 满分网
(1)如答图1,连接OG.根据切线性质及CD⊥AB,可以推出连接∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE; (2)AC与EF平行,理由为:如答图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF; (3)如答图3所示,连接OG,OC.首先求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度. 【解析】 (1)如答图1,连接OG. ∵EG为切线,∴∠KGE+∠OGA=90°, ∵CD⊥AB,∴∠AKH+∠OAG=90°, 又OA=OG,∴∠OGA=∠OAG, ∴∠KGE=∠AKH=∠GKE, ∴KE=GE. (2)AC∥EF,理由为: 连接GD,如答图2所示. ∵KG2=KD•GE,即=, ∴=,又∠KGE=∠GKE, ∴△GKD∽△EGK, ∴∠E=∠AGD,又∠C=∠AGD, ∴∠E=∠C, ∴AC∥EF; (3)连接OG,OC,如答图3所示. sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t, ∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t. 在Rt△AHK中,根据勾股定理得AH2+HK2=AK2, 即(3t)2+t2=(2)2,解得t=. 设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t, 由勾股定理得:OH2+CH2=OC2, 即(r-3t)2+(4t)2=r2,解得r=t=. ∵EF为切线,∴△OGF为直角三角形, 在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH==, ∴FG===.
复制答案
考点分析:
相关试题推荐
一块直角三角形形状的铁皮材料,两直角边长分别为30cm、40cm,现要把它加工成一个面积最大的正方形,两种加工方法如图①、②,请你用学过的知识说明哪种加工方法符合要求?
manfen5.com 满分网
查看答案
广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
查看答案
如图.是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为45°,为了方便行人安全过天桥,市政部门决定降低坡度,使新坡面的倾斜角为30°.若新坡脚前需留2.5米的人行道,问离原坡脚10米的建筑物是否需要拆除?请说明理由.(参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
有质地均匀的A、B、C、D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.
(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;
(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢.问这个游戏公平吗?为什么?如果不公平,请你设计一个公平的游戏规则.
查看答案
如图,一次函数y=-2x+b(b为常数)的图象与反比例函数manfen5.com 满分网(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(-1,4).
(1)分别求出反比例函数及一次函数的表达式;
(2)求点B的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.