满分5 > 初中数学试题 >

如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l...

manfen5.com 满分网如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3.
(1)设点P的纵坐标为p,写出p随变化的函数关系式.
(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明;
(3)是否存在使△AMN的面积等于manfen5.com 满分网的k值?若存在,请求出符合的k值;若不存在,请说明理由.
(1)由切线的性质知∠AOB=∠OAD=∠ADB=90°,所以可以判定四边形OADB是矩形;根据⊙O的半径是2求得直径AD=4,从而求得点P的坐标,将其代入直线方程y=kx+3即可知p变化的函数关系式; (2)连接DN.∵直径所对的圆周角是直角,∴∠AND=90°,∴根据图示易证∠AND=∠ABD;然后根据同弧所对的圆周角相等推知∠ADN=∠AMN,再由等量代换可知∠ABD=∠AMN;最后利用相似三角形的判定定理AA证明△AMN∽△ABP; (3)存在.把x=0代入y=kx+3得y=3,即OA=BD=3,然后由勾股定理求得AB=5;又由相似三角形的相似比推知相似三角形的面积比.分两种情况进行讨论:①当点P在B点上方时,由相似三角形的面积比得到k2-4k-2=0,解关于k的一元二次方程;②当点P在B点下方时,由相似三角形的面积比得到k2+1=-(4k+3),解关于k的一元二次方程. 【解析】 (1)∵y轴和直线l都是⊙C的切线, ∴OA⊥AD,BD⊥AD; 又∵OA⊥OB, ∴∠AOB=∠OAD=∠ADB=90°, ∴四边形OADB是矩形; ∵⊙C的半径为2, ∴AD=OB=4; ∵点P在直线l上, ∴点P的坐标为(4,p); 又∵点P也在直线AP上, ∴p=4k+3; (2)连接DN. ∵AD是⊙C的直径, ∴∠AND=90°, ∵∠ADN=90°-∠DAN,∠ABD=90°-∠DAN, ∴∠ADN=∠ABD, 又∵∠ADN=∠AMN, ∴∠ABD=∠AMN(4分) ∵∠MAN=∠BAP(5分) ∴△AMN∽△ABP(6分) (3)存在.(7分) 理由:把x=0代入y=kx+3得:y=3,即OA=BD=3, AB=, ∵S△ABD=AB•DN=AD•DB ∴DN==, ∴AN2=AD2-DN2=, ∵△AMN∽△ABP, ∴,即(8分) 当点P在B点上方时, ∵AP2=AD2+PD2=AD2+(PB-BD)2=42+(4k+3-3)2=16(k2+1), 或AP2=AD2+PD2=AD2+(BD-PB)2=42+(3-4k-3)2=16(k2+1), S△ABP=PB•AD=(4k+3)×4=2(4k+3), ∴, 整理得:k2-4k-2=0, 解得k1=2+,k2=2-(9分) 当点P在B点下方时, ∵AP2=AD2+PD2=42+(3-4k-3)2=16(k2+1),S△ABP=PB•AD=[-(4k+3)]×4=-2(4k+3) ∴ 化简得:k2+1=-(4k+3),解得:k=-2, 综合以上所得,当k=2±或k=-2时,△AMN的面积等于(10分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图).两村的坐标分别为A(2,3),B(12,7).
(1)若从节约经费考虑,水泵站建在距离大桥多远的地方可使所用输水管道最短?
(2)水泵站建在距离大桥多远的地方,可使它到张村、李村的距离相等?
查看答案
“五一”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电,这批家电的进价和售价如下表:
类别彩电冰箱洗衣机
进价200016001000
售价220018001100
(1)若全部资金用来购买彩电和洗衣机共100台,问商店可以购买彩电和洗衣机各多少台?
(2)若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价)
查看答案
manfen5.com 满分网如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN于点C,F是CD的中点,连接OF.
(1)求证:OD∥BE;
(2)猜想:OF与CD有何数量关系?并说明理由.
查看答案
某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:
manfen5.com 满分网
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:
测试项目测试成绩/分
笔试929095
面试859580
图二是某同学根据上表绘制的一个不完全的条形图.
请你根据以上信息解答下列问题:
(1)补全图一和图二;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
查看答案
manfen5.com 满分网日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A处,观测到某港口城市P位于海检船的北偏西67.5°方向,海检船以21海里/时 的速度向正北方向行驶,下午2时海检船到达B处,这时观察到城市P位于海检船的南偏西36.9°方向,求此时海检船所在B处与城市P的距离?
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.