满分5 > 初中数学试题 >

如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,...

如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数manfen5.com 满分网(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=manfen5.com 满分网
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

manfen5.com 满分网
(1)根据点E的纵坐标判断出OA=4,再根据tan∠BOA=即可求出AB的长度; (2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值; (3)先利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度. 【解析】 (1)∵点E(4,n)在边AB上, ∴OA=4, 在Rt△AOB中,∵tan∠BOA=, ∴AB=OA×tan∠BOA=4×=2; (2)根据(1),可得点B的坐标为(4,2), ∵点D为OB的中点, ∴点D(2,1) ∴=1, 解得k=2, ∴反比例函数解析式为y=, 又∵点E(4,n)在反比例函数图象上, ∴=n, 解得n=; (3)如图,设点F(a,2), ∵反比例函数的图象与矩形的边BC交于点F, ∴=2, 解得a=1, ∴CF=1, 连接FG,设OG=t,则OG=FG=t,CG=2-t, 在Rt△CGF中,GF2=CF2+CG2, 即t2=(2-t)2+12, 解得t=, ∴OG=t=.
复制答案
考点分析:
相关试题推荐
为了援助失学儿童,初三学生李明从2012年1月份开始,每月一次将相等数额的零用钱存入已有部分存款的储蓄盒内,准备每6个月一次将储蓄盒内存款一并汇出(汇款手续费不计).已知2月份存款后清点储蓄盒内有存款80元,5月份存款后清点储蓄盒内有存款125元.
(1)在李明2012年1月份存款前,储蓄盒内已有存款多少元?
(2)为了实现到2015年6月份存款后存款总数超过1000元的目标,李明计划从2013年1月份开始,每月存款都比2012年每月存款多t元(t为整数),求t的最小值.
查看答案
重庆一中综合实践活动艺体课程组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题:
manfen5.com 满分网
(1)求这次接受调查的学生人数,并补全条形统计图;
(2)求扇形统计图中喜欢排球的圆心角度数;
(3)若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或画树状图的方法,求出刚好抽到一男一女的概率.
查看答案
如图,PA为⊙O的切线,A为切点,⊙O的割线PBC过点O与⊙O分别交于B、C,PA=8cm,PB=4cm,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.
求证:∠AEB=∠CFB.

manfen5.com 满分网 查看答案
(1)计算:manfen5.com 满分网
(2)解分式方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.