满分5 > 初中数学试题 >

如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别...

如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于manfen5.com 满分网MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.
manfen5.com 满分网
A.1
B.2
C.3
D.4
①根据作图的过程可以判定AD是∠BAC的角平分线; ②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数; ③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上; ④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比. 【解析】 ①根据作图的过程可知,AD是∠BAC的平分线. 故①正确; ②如图,∵在△ABC中,∠C=90°,∠B=30°, ∴∠CAB=60°. 又∵AD是∠BAC的平分线, ∴∠1=∠2=∠CAB=30°, ∴∠3=90°-∠2=60°,即∠ADC=60°. 故②正确; ③∵∠1=∠B=30°, ∴AD=BD, ∴点D在AB的中垂线上. 故③正确; ④∵如图,在直角△ACD中,∠2=30°, ∴CD=AD, ∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD. ∴S△ABC=AC•BC=AC•AD=AC•AD, ∴S△DAC:S△ABC=AC•AD:AC•AD=1:3. 故④正确. 综上所述,正确的结论是:①②③④,共有4个. 故选D.
复制答案
考点分析:
相关试题推荐
一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.1
查看答案
用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )
A.2πcm
B.1.5cm
C.πcm
D.1cm
查看答案
将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是( )
A.(-3,2)
B.(-1,2)
C.(1,2)
D.(1,-2)
查看答案
下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知反比例函数y=manfen5.com 满分网的图象经过点(2,-2),则k的值为( )
A.4
B.-manfen5.com 满分网
C.-4
D.-2
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.