满分5 > 初中数学试题 >

在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交...

在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.
(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.
(2)如图2,AC:AB=1:manfen5.com 满分网,EF⊥CE,求EF:EG的值.
manfen5.com 满分网
(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD; (2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值. (1)证明:如图1, 在△ABC中,∵∠CAB=90°,AD⊥BC于点D, ∴∠CAD=∠B=90°-∠ACB. ∵AC:AB=1:2,∴AB=2AC, ∵点E为AB的中点,∴AB=2BE, ∴AC=BE. 在△ACD与△BEF中, , ∴△ACD≌△BEF, ∴CD=EF,即EF=CD; (2)【解析】 如图2,作EH⊥AD于H,EQ⊥BC于Q, ∵EH⊥AD,EQ⊥BC,AD⊥BC, ∴四边形EQDH是矩形, ∴∠QEH=90°, ∴∠FEQ=∠GEH=90°-∠QEG, 又∵∠EQF=∠EHG=90°, ∴△EFQ∽△EGH, ∴EF:EG=EQ:EH. ∵AC:AB=1:,∠CAB=90°, ∴∠B=30°. 在△BEQ中,∵∠BQE=90°, ∴sin∠B==, ∴EQ=BE. 在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°, ∴cos∠AEH==, ∴EH=AE. ∵点E为AB的中点,∴BE=AE, ∴EF:EG=EQ:EH=BE:AE=1:.
复制答案
考点分析:
相关试题推荐
若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD中,BC=2AB,则称ABCD为方形.
manfen5.com 满分网
(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).
(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.
①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?
②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.
查看答案
manfen5.com 满分网如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm
伞架DEDFAEAFABAC
长度363636368686
(1)求AM的长.
(2)当∠BAC=104°时,求AD的长(精确到1cm).
备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.
查看答案
某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:
manfen5.com 满分网
(1)这次被调查的共有多少名同学?并补全条形统计图.
(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?
查看答案
如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向平移5个单位,得到矩形AnBnCnDn(n>2).
manfen5.com 满分网
(1)求AB1和AB2的长.
(2)若ABn的长为56,求n.
查看答案
某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.