满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物...

如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2-2x-3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.

manfen5.com 满分网
(1)首先解方程得出A,B两点的坐标,进而利用待定系数法求出二次函数解析式即可; (2)①首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OC=OP时,当OP=PC时,点P在线段OC的中垂线上,当OC=PC时分别求出x的值即可; ②利用S△BOD=S△ODQ+S△BDQ得出关于x的二次函数,进而得出最值即可. 解(1)解方程x2-2x-3=0, 得 x1=3,x2=-1. ∵m<n, ∴m=-1,n=3…(1分) ∴A(-1,-1),B(3,-3). ∵抛物线过原点,设抛物线的解析式为y=ax2+bx(a≠0). ∴ 解得:, ∴抛物线的解析式为.…(4分) (2)①设直线AB的解析式为y=kx+b. ∴ 解得:, ∴直线AB的解析式为. ∴C点坐标为(0,).…(6分) ∵直线OB过点O(0,0),B(3,-3), ∴直线OB的解析式为y=-x. ∵△OPC为等腰三角形, ∴OC=OP或OP=PC或OC=PC. 设P(x,-x), (i)当OC=OP时,. 解得,(舍去). ∴P1(,). (ii)当OP=PC时,点P在线段OC的中垂线上, ∴P2(,-). (iii)当OC=PC时,由, 解得,x2=0(舍去). ∴P3(,-). ∴P点坐标为P1(,)或P2(,-)或P3(,-).…(9分) ②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H. 设Q(x,-x),D(x,). S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH, =DQ(OG+GH), =, =, ∵0<x<3, ∴当时,S取得最大值为,此时D(,-).…(13分)
复制答案
考点分析:
相关试题推荐
如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1
manfen5.com 满分网
(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;
(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;
(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)
查看答案
为了迎接“五•一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.
(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?
(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价-进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么该专卖店要获得最大利润应如何进货?
查看答案
水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为manfen5.com 满分网米,加固后大坝的横截面积为梯形ABED,CE的长为8米.
(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?
(2)求加固后的大坝背水坡面DE的坡度.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(-4,0).
(1)求经过点C的反比例函数的解析式;
(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.

manfen5.com 满分网 查看答案
如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连结AA1,CC1.若△ABA1的面积为4,求△CBC1的面积.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.