满分5 > 初中数学试题 >

在▱ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE...

在▱ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;
(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.
(2)试探究当△CPE≌△CPB时,▱ABCD的两边AB与BC应满足什么关系?

manfen5.com 满分网
(1)延长PE交CD的延长线于F,设AP=x,△CPE的面积为y,由四边形ABCD为平行四边形,利用平行四边形的对边相等得到AB=DC,AD=BC,在直角三角形APE中,根据∠A的度数求出∠PEA的度数为30度,利用直角三角形中30度所对的直角边等于斜边的一半表示出AE与PE,由AD-AE表示出DE,再利用对顶角相等得到∠DEF为30度,利用30度所对的直角边等于斜边的一半表示出DF,由两直线平行内错角相等得到∠F为直角,表示出三角形CPE的面积,得出y与x的函数解析式,利用二次函数的性质即可得到三角形CPE面积的最大值,以及此时AP的长; (2)由△CPE≌△CPB,利用全等三角形的对应边相等,对应角相等得到BC=CE,∠B=∠PEC=120°,进而得出∠ECD=∠CED,利用等角对等边得到ED=CD,即三角形ECD为等腰三角形,过D作DM垂直于CE,∠ECD=30°,利用锐角三角形函数定义表示出cos30°,得出CM与CD的关系,进而得出CE与CD的关系,即可确定出AB与BC满足的关系. 【解析】 (1)延长PE交CD的延长线于F, 设AP=x,△CPE的面积为y, ∵四边形ABCD为平行四边形, ∴AB=DC=6,AD=BC=8, ∵Rt△APE,∠A=60°, ∴∠PEA=30°, ∴AE=2x,PE=x, 在Rt△DEF中,∠DEF=∠PEA=30°,DE=AD-AE=8-2x, ∴DF=DE=4-x, ∵AB∥CD,PF⊥AB, ∴PF⊥CD, ∴S△CPE=PE•CF, 即y=×x×(10-x)=-x2+5x, 配方得:y=-(x-5)2+, 当x=5时,y有最大值, 即AP的长为5时,△CPE的面积最大,最大面积是; (2)当△CPE≌△CPB时,有BC=CE,∠B=∠PEC=120°, ∴∠CED=180°-∠AEP-∠PEC=30°, ∵∠ADC=120°, ∴∠ECD=∠CED=180°-120°-30°=30°, ∴DE=CD,即△EDC是等腰三角形, 过D作DM⊥CE于M,则CM=CE, 在Rt△CMD中,∠ECD=30°, ∴cos30°==, ∴CM=CD, ∴CE=CD, ∵BC=CE,AB=CD, ∴BC=AB, 则当△CPE≌△CPB时,BC与AB满足的关系为BC=AB.
复制答案
考点分析:
相关试题推荐
如图1,在一直角边长为4米的等腰直角三角形地块的每一个正方形网格的格点(纵横直线的交点及三角形顶点) 上都种植同种农作物,根据以往种植实验发现,每株农作物的产量y(单位:千克) 受到与它周围直线距离不超过1米的同种农作物的株数x(单位:株) 的影响情况统计如下表:
manfen5.com 满分网
x(株)1234
y(千克)21181512
(1)通过观察上表,猜测y与x之间之间存在哪种函数关系,求出函数关系式并加以验证;
(2)根据种植示意图1填写下表,并求出这块地平均每平方米的产量为多少千克?
y(千克)21181512
频数
(3)有人为提高总产量,将上述地块拓展为斜边长为6米的等腰直角三角形,采用如图2所示的方式,在每个正方形网格的格点上都种植了与前面相同的农作物,共种植了16株,请你通过计算平均每平方米的产量,来比较那种种植方式更合理?
查看答案
如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=manfen5.com 满分网
(1)求抛物线的解析式;
(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.

manfen5.com 满分网 查看答案
在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.
(1)求证:AC与⊙O相切.
(2)若BC=6,AB=12,求⊙O的面积.

manfen5.com 满分网 查看答案
manfen5.com 满分网在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;
求证:DF=DC.
查看答案
小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求m的值;
(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.